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Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal mortality and 
developmental disabilities. It has been revealed that the temporal behavior of the cerebral blood 
volume (CBV) carries information on the degree of hypoxia-ischemia. CBV can be estimated by means 
of near-infrared spectroscopy. The change of CBV after the insult is related to the change of CBV during 
the insult. In this paper, we consider a mathematical model which governs the time evolution of CBV 
after the insult. We show that the temporal behavior of CBV can be predicted with the Kalman filter 
which is based on the mathematical model. Finding a governing equation opens up possibilities for a 
more quantitative diagnosis of HIE.

Neonatal hypoxic-ischemic encephalopathy (HIE) causes death and developmental disabilities in newborns1. 
It occurs in about 2-3 per 1000 births in developed countries2,3. It is primarily caused by a lack of oxygen and 
blood flow to the brain due to factors such as birth asphyxia, maternal conditions, and placental insufficiency. 
Understanding HIE requires evaluating changes in cerebral circulation and oxygen metabolism to develop 
effective interventions. It is essential to initiate therapeutic hypothermia early (within six hours after birth 
but earlier is better) to improve survival and neurodevelopmental outcomes for asphyxiated neonates with 
moderate-to-severe HIE4,5.

Since near-infrared light is particularly absorbed by hemoglobin, cerebral blood volume (CBV) can be 
estimated with near-infrared spectroscopy (NIRS) using the time-resolved spectroscopy (TRS, Hamamatsu 
Photonics K.K.). For the piglet experiment which will be considered in this paper, two optical fibers (one is 
for emission and the other is for detection) were attached to the head of each piglet with the source-detector 
distance 30 mm (the typical penetration depth is about a centimeter). In TRS, the time-correlated single-photon 
counting technique is used to detect photons. By photon detection with three wavelengths, the oxyHb and 
deoxyHb concentrations can be estimated, which can then be converted to CBV6,7. TRS has a non-invasive 
technique for continuous monitoring that allows repeated NIRS measurements to create a time series of 
measured data. The use of NIRS for monitoring cerebral hemodynamics and oxygenation has provided useful 
insights for the management of newborns8,9. By conducting a retrospective study of 11 neonates admitted to the 
NICU at Kagawa University, it was indicated that the change of CBV was more prominently related to the clinical 
outcome than the change of cerebral hemoglobin oxygen saturation (ScO2)10.

Previously, we reported how CBV during and after HI insult changed and that CBV after insult reflected 
histopathological brain injuries in piglet11–14. In piglets subjected to the HI insult, CBV initially rises to a peak 
and then keeps decreasing until resuscitation. After resuscitation, a piglet with more reduction during insult 
shows more increase after insult. Hence, these changes in the CBV pattern are related to the severity of brain 
injuries caused by autoregulatory impairment. Impaired cerebral autoregulation results in adverse neurological 
outcomes15,16. The time evolution of CBV reflects the degree of hypoxia-ischemia. In particular, the dependence 
of the temporal change y after the insult on the decay amount x of CBV during the HI insult was investigated13.

In this paper, we focus on the temporal change of CBV for HIE experiments with piglets. To predict the time 
evolution of CBV after the insult, it is desirable to find a differential equation which governs the phenomenon. 
This situation is somewhat similar to weather forecast, which is based on the primitive equations. The change of 
CBV in time takes place as a consequence of extremely complicated blood flows in the body, which in principle 
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can be described by the fluid dynamics. Without touching detailed blood flows in the head, we seek a differential 
equation which is able to reproduce the time evolution of CBV. This is in some sense related to seeking laws of 
thermodynamics without statistical mechanics. In this paper, we propose a differential equation which governs 
the time evolution of CBV for the piglets. To validate the mathematical model, we predict the time dependence 
of CBV using the observed data from the piglet experiments. The Kalman filter was used for the prediction.

The Kalman filter is a technique to correct the time evolution obtained by a mathematical model using 
observation. Suppose that a wave moves with a constant velocity. The waveform obeys the transport equation 
with the first-order space and time derivatives. Even though we know that the wave moves from left to right, 
the mathematical model may not be exact due to the uncertainty about the wave speed and whether the linear 
wave propagation model is correct. To compensate for the difference between the ideal and actual situations, 
the prediction by the governing equation need to be modified using measurement data (see, for example, the 
textbook by Kaipio and Somersalo17).

The Kalman filter, including the extended Kalman filter, has been used for a pulmonary blood flow estimator18, 
cerebral blood flow autoregulation19,20, and the heart rate detection with reflected light21, microvessel imaging 
for microvessel density maps and blood flow speed maps22, and the hemodynamic responses for functional near-
infrared spectroscopy23. See a review by Nolte and Bertoglio for the blood flow for the cardiovascular system24.

Since it is not easy to obtain the time dependence of CBV for neonates and even newborn piglets, the Kalman 
filter has not been used in the context of neonatal HIE. Moreover, to the best of our knowledge, any mathematical 
model has not been proposed for the time evolution of CBV for the neonatal HIE.

Results
Figure 1 shows the temporal change y (mL per 100 g) of CBV beginning at the resuscitation from the HI insult 
for different x (mL per 100 g), which is the difference of the blood volume between the maximum value during 
the insult and the value at the beginning of the resuscitation. See Ref. 13 for piglet experiments for the data shown 
in Fig. 1. Measurements were performed every 10 sec and averages of six measurements were taken to plot the 
temporal profile every minute. In Fig. 1, the red line with solid circles is y for x = 1.85, the ocher line with open 
squares is y for x = 1.324, and the green line with diagonal crosses is y for x = 0.993.

For each curve in Fig. 1, one-step prediction was done with the Kalman filter. Curves in Fig. 1 are drawn 
with N + 1 points (ti, yi) (i = 0, 1, . . . , N ). Here, N = 20. We note that ti − ti−1 = 1 min (i = 1, . . . , N ). 
In each of three panels of Fig. 2, predicted values of yi were computed with the Kalman filter using y1, . . . , yi−1. 
The linear mathematical model (see below) was used for the Kalman filter. In this way, the actual values (red) 
and predicted values (blue) are compared in each panel. In the panels of Fig. 2, green points show the standard 
deviation of the error at each time. In the case of x = 0.993, ω = 0.446 rad/min. In the case of x = 1.324, 
ω = 0.370 rad/min. In the case of x = 1.85, ω = 0.243 rad/min. In all cases, tc = 1 min, xp = 1.5, a = 1, 
b = 0.3. The unit of time was hour instead of minute for the Kalman filter, in which case ∆τ = 1/60 hr.

In Figs. 3 and 4, prediction for longer times was considered. Figure 3 shows an example of y which decays in 
time and Fig. 4 shows an example of y which grows in time. In the top left panels of Figs. 3 and 4, predicted values 
are plotted for the last 5 min. That is, the Kalman filter algorithm did not use observed data for the last 5 min. 
Similarly, in the top right panels of Figs. 3 and 4, predicted values for the last 10 min are plotted. In the bottom 
panels of Figs. 3 and 4, predicted values for the last 15 min are plotted.

The parameters in the proposed mathematical model were chosen to reproduce the observed behavior of y. 
In particular, the same β, b were used for Figs. 2, 3, and 4. Figure 5 illustrates predicted values when other β, b 
are used.
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Fig. 1. Time evolutions of the change y of CBV for three cases which are used in this paper. Here, x denotes 
the change of CBV during the insult. From the top, the red line is for x = 1.85, ocher line is for x = 1.324, 
and green line is for x = 0.993.
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Fig. 3. Predictions for the last (A) 5 min, (B) 10 min, and (C) 15 min in the case of x = 0.993, ω = 0.446.

 

Fig. 2. One-step (1 min) predictions for (A) x = 0.993, ω = 0.446, (B) x = 1.324, ω = 0.370, and (C) 
x = 1.85, ω = 0.243. Blue circles show the observed data and red circles mean predicted values. Moreover, 
green circles show the standard deviation of the estimated error in upper and lower directions.
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Discussion
As shown in Fig.  1, the change y of CBV has an increasing tendency, a decreasing tendency, or no strong 
increasing nor decreasing behavior. The major cause of such variety is the amount x of the drop of CBV during 
the HI insult between the peak time and the resuscitation time13. During the HI insult, CBV initially rises rapidly 
as a compensatory response, followed by impaired cerebral blood flow autoregulation and vasoparalysis, leading 
to a gradual decrease in CBV as decompensation sets in. It was found that a large decrease of CBV from the 
baseline during insult was associated with severe brain injury or mortality11.

Since the change of y during 1 min is monotonic, the one-step prediction (prediction every minute) worked 
well as shown in Fig. 2. In Fig. 2, predicted values agree with the observed data after the first a few minutes of the 
filtering process of the Kalman filter.

Longer predictions were performed in Figs. 3 and 4. We can observe that predictions within 10 min work 
quite well. Since longer predictions were tested using the same time-series data up to 20 min, the filter process 
becomes shorter for longer prediction. Moreover, since the linear model is used for the Kalman filter, it is not 
possible to predict nonmonotonic behavior of CBV.

We properly chose parameters in the mathematical model. This is explained in Fig. 5. The prediction is not 
successful if other parameters are chosen. We emphasize that the parameter x, ω depend on individual sample 
but otherwise the same parameters were used for all samples in Figs. 2 through 4.

Fig. 5. These graphs correspond to the top right panel of Fig. 3. In the case of x = 0.993, (A) a = 10 and (B) 
b = 3 while other parameters are the same as the parameters used in Fig. 3.

 

Fig. 4. Predictions for the last (A) 5 min, (B) 10 min, and (C) 15 min in the case of x = 1.85, ω = 0.243.
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In principle, parameters in the mathematical model depend on factors such as blood pressure and heart rate, 
as well as sex difference, presence or absence of infections, and severity. For example, it was observed for both 
piglets13 and fetal sheep25 that if the heart rate increases more during insult, it also increases more after the insult.

We note that CBV in the brain is not homogeneous26. Moreover, since the TRS assumes a homogeneous half-
space domain when it estimates absorption and scattering coefficients using the diffusion theory, the estimated 
CBV by TRS deviates from the true value of the blood volume. However, our previous studies showed that the 
change of this CBV is related to the degree of HIE (see Mitsuie, et al., Scientific Reports (2021)13 and references 
therein). Hence, in this paper, we seek a mathematical model for this CBV.

CBV obtained with TRS primarily reflects hemodynamics in the superficial cerebral cortex. However, 
neonates have small heads and only a short distance separates the cortex from the subcortical white matter. 
Hence, ischemic changes are likely to develop in both layers simultaneously. Particularly in HIE, ischemic 
injuries of the subcortical white matter and deep gray matter often coexist27. Changes in the superficial cortex 
detected by TRS may indirectly reflect metabolic disorders in deeper areas of the brain.

It should be emphasized that the proposed mathematical model describes the change of CBV due to the 
hypoxic–ischemic insult. Hence the model is phenomenological. The hepatic portal vein flow was simulated 
using the Navier-Stokes equation with a fractal tree network29. The mathematical modeling of solutes absorption 
processes by the arterial wall was discussed30. The blood flow in the capillary network on a tumor was simulated31. 
Unlike these above studies, the relation between the dynamics of CBV due to HIE and differential equations is 
an open problem and no mathematical model had been known. Although during the first 20 min after birth, we 
could move the situation one step forward with the proposed mathematical model.

Conclusion
In this paper, we explored the change of CBV during 20 minutes after the HI insult in neonatal piglets with HIE. 
In general, a large CBV decrease during the insult causes an increase of the post-insult CBV.

We proposed a mathematical model which can reproduce the behavior that greater decreases in CBV during 
the HI insult are followed by more pronounced increases after the insult.

Based on the proposed linear model, we showed that the time evolution of CBV can be predicted with the 
Kalman filter. This fact implies that the proposed model governs the change of CBV in time for neonatal HIE.

Materials and methods
Model
Let V(t) be the cerebral blood volume [mL] (per 100 g) at time t [hr]. We suppose that the hypoxic-ischemic 
period ends at t = 0. Let tmax > 0 be the maximum time (tmax = 1/3 in this paper). Since y is the change of 
CBV after the insult, CBV at time t can be calculated as the sum of CBV at the beginning of the resuscitation and 
y. We can express V(t) as

 V (t) = vmax − x + y(t; x), 0 < t < tmax,

where x is the blood volume which goes away from the brain after it reaches the peak vmax until t = 0 and y(t; x) 
is the change of the cerebral blood volume for t > 0.

Our previous research with piglets implied that y(t; x) rotates about the origin of the x-y plain for small 
t > 0 and then starts rotating about another point (xp, yp)13. In light of this observation, we make the following 
model:

 
y(t; x) =

{
x tan(ωt), 0 < t ≤ tc,

u(τ ; x) + y(tc; x), τ = t − tc, tc < t < tmax,
 (1)

where ω is a positive constant. Here, we supposed that y(t; x) rotates about the origin in the x-y plane until time 
tc. We note that the angular frequency ω is given by

 
ω = 1

tc
tan−1

(
yp

xp

)
.

Thus, ω can be determined if xp, yp, tc are estimated from observed data. For later use let us introduce the 
distance ξ(x) in the x-y plane between a point (x, y) and (xp, yp) at time tc, which is expressed as

 
ξ(x) = x − xp

cos(ωtc) .

Next, we consider u(τ ; x). By looking at the temporal behavior of points in the x-y plane, where each point 
corresponds to one experiment with a piglet13, we regard u as the position of a particle that moves according to 
Newton’s equation of motion. Since the motion is the change of CBV, the particle should stop eventually. This 
time-evolution can be achieved by the introduction of a friction term. Let us consider the equation of motion in 
the presence of friction:

 
d2u

dτ2 = −b
du

dτ
, b > 0. (2)

Scientific Reports |        (2025) 15:26806 5| https://doi.org/10.1038/s41598-025-11898-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


We give the initial conditions as

 
u(0) = 0,

du

dτ
(0) = aξ(x),

where a is a positive constant. Since the initial velocity is proportional to ξ, the initial speed is slow is the point 
(x, y(tc; x)) is close to (xp, yp). The mathematical model which is given in (1) and (2) is simple but satisfies 
observed temporal behavior of the experimental data.

The solution to (2) is obtained as

 
u(τ) = a

b
ξ(x)

(
1 − e−bτ

)
.

The Kalman filter
Let us discretize time to apply the Kalman. We have

 





d

dτ

(
u
v

)
=

(
v

−bv

)
, τ > 0,

(
u(0)
v(0)

)
=

( 0
aξ(x)

)
.

Let us discretize time as tk = k∆τ  (tc = kc∆τ ). We can write

 

(
uk

vk

)
=

(
uk−1 + vk−1∆τ
vk−1 − bvk−1∆τ

)

for k = kc + 1, . . . . Let us set

 
F =

(1 ∆τ
0 1 − b∆τ

)
, H = (1 0) .

The state equation and observation equation are given by

 xk = Fxk−1 + w(1), yk(x) = Hxk + w(2),

where w(1) ∈ R2 and w(2) ∈ R are Gaussian noise for the system and measurement noise. Let Q, R be diagonal 
system noise and measurement error covariance matrices:

 Q = E
[
w(1)w(1)T

]
∈ R2, R = E

[
w(2)2]

∈ R,

where E[·] denotes the expectation value. We set Q = 0.01I , R = 0.01, where I is the 2 × 2 identity matrix.
Let x̂k  be the estimated state vector. The calculation consists of the prediction and update steps28. The 

prediction step is done as follows. We have

 R2 ∋ x̂k|k−1 = F x̂k−1, R2×2 ∋ Pk|k−1 = F Pk−1F T + Q.

Here, the error covariance matrix Pk  is given by

 Pk = E
[
(xk − x̂k)(xk − x̂k)T

]
.

Initially we set Pkc = I . Then the update step is performed as follows:

 

R ∋ zk = yk − Hx̂k|k−1,

R ∋ Sk = HPk|k−1HT + R = {Pk|k−1}11 + R,

R2 ∋ Kk = Pk|k−1HT S−1
k =

({Pk|k−1}11
{Pk|k−1}21

) 1
Sk

,

R2 ∋ x̂k = x̂k|k−1 + Kkzk,

R2×2 ∋ Pk = (I − KkH) Pk|k−1.

Let us consider the j-step prediction. After k = kM , we have

 

x̂kM +i = F x̂kM +i−1,

PkM +i = F PkM +i−1F T + Q

for i = 1, . . . , j.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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