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Linear Transport in Porous Media

Kenji Amagaia, Yuko Hatanoa, and Manabu Machidab

aGraduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan;
bInstitute for Medical Photonics Research, Hamamatsu University School of Medicine, Hamamatsu, Japan

ABSTRACT
The linear transport theory is developed to describe the time
dependence of the number density of tracer particles in por-
ous media. The advection is taken into account. The transport
equation is numerically solved by the analytical discrete ordi-
nates method. For the inverse Laplace transform, the double-
exponential formula is employed. In this paper, we consider
the travel distance of tracer particles whereas the half-space
geometry was assumed in our previous paper [Amagai et al.
(2020). Trans. Porous Media 132:311–331].

KEYWORDS
Boltzmann equation;
deterministic method;
transport equation

1. Introduction

The use of the transport equation for the flow in porous media was proposed
by Williams (1992a, 1992b, 1993a, 1993b). Recently it was experimentally
shown that the concentration of tracer particles in column experiments obeys
the transport equation (Amagai et al. 2020). In Amagai et al. (2020), the advec-
tion u> 0 was taken into account. Then the spatial derivative term in the trans-
port equation is given by ðuþ v0lÞ@=@x instead of l@=@x, where v0 > 0 is
the inherent particle speed and l 2 ½�1, 1� is the cosine of the polar angle. The
transport equation with such a spatial derivative term has been explored in the
context of the evaporation of rarefied gas (Loyalka, Siewert, and Thomas 1981;
Scherer and Barichello 2009; Siewert and Thomas 1981, 1982).
In column experiments (Cortis et al. 2004), a column tube is filled with

a granular material such as sand or glass beads, and water is poured from
the top end of the column. Then tracer particles are injected to the water.
They enter the column from the top and eventually exit from the bottom
of the column. In Amagai et al. (2020), the concentration of tracer particles
was computed making use of the method of analytical discrete ordinates
(ADO). Both the short-time growing behavior and long-time decay behav-
ior of the breakthrough curve (the time dependence of the concentration)
were well reproduced by the transport equation (Amagai et al. 2020).
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In Amagai et al. (2020), the solution to the transport equation for a
semi-infinite medium was compared to the experimental data. In this
paper, we give a formulation for the transport equation in the slab geom-
etry taking into account the length of the column. We make use of the
double-exponential formula for the inverse Laplace transform.
The rest of the paper is organized as follows. In Section 2, we formulate our

transport problem in the slab geometry. In Section 3, a numerical scheme is devel-
oped using ADO. In Section 4, our numerical scheme of the inverse Laplace trans-
form is described. Finally, concluding remarks are given in Section 6.

2. The transport equation

Let us consider the one-dimensional linear Boltzmann equation. The vel-
ocity v is given by v ¼ uþ v0l: Let ra > 0 and rs > 0 be the absorption
and scattering coefficients, respectively. Let L be the length of the column.
We write our transport equation as follows.

Pwðx, l, tÞ ¼ rs
2

ð1
�1

wðx, l, tÞ dl, 0 < x < L, �1 � l � 1, t > 0,

wðx, l, 0Þ ¼ 0, 0 < x < L, �1 � l � 1,

wð0,l, tÞ ¼ n0dðl� 1Þ, �g < l � 1, t > 0,

wðL, l, tÞ ¼ 0, �1 � l < �g, t > 0,

8>>>>>><
>>>>>>:

(2.1)

where

Pwðx, l, tÞ ¼ @

@t
þ ðuþ v0lÞ @

@x
þ ra þ rs

� �
wðx, l, tÞ:

Here, dðl� 1Þ is the Dirac delta function, n0 is the initial particle number
density, and

g ¼ u
v0
:

We call wðx, l, tÞ the angular number density. The particle number dens-
ity n(t) at x¼ L is given by

nðtÞ ¼
ð1
�g

wðL, l, tÞ dl:

3. The laplace transform

Let us introduce the Laplace transform

ŵðx, l, pÞ ¼
ð1
0
e�ptwðx, l, tÞ dt, p 2 C,

378 K. AMAGAI ET AL.



and new variables

lt ¼
ra þ rs þ p

v0
2 C, ls ¼

rs
v0

> 0:

Then we have

ðgþ lÞ @

@x
ŵðx, l, pÞ þ ltŵðx, l, pÞ ¼

ls
2

ð1
�1

ŵðx, l, pÞ dl, 0 < x < L, �1 � l � 1,

ŵð0, l, pÞ ¼ n0
p
dðl� 1Þ, �g < l � 1,

ŵðL,l, pÞ ¼ 0, �1 � l < �g:

8>>>>>><
>>>>>>:
We note that the coefficient lt is a complex number and the boundary

conditions are specified by intervals ð�g, 1� and ½�1, � gÞ: We will obtain

ŵðx, l, pÞ in the above-mentioned equation using the analytical discrete
ordinates method (ADO) (Barichello 2011; Barichello and Siewert 1999a,
1999b; Barichello, Garcia, and Siewert 2000; Barichello and Siewert 2001;
Siewert and Wright 1999).

Remark 3.1. By changing lþ g ! ~l and defining f̂ ðx, ~l, pÞ ¼ ŵðx, ~l �
g, pÞ, we can reformulate the equation as

~l
@

@x
f̂ ðx, ~l, pÞ þ lt f̂ ðx, ~l, pÞ ¼

ls
2

ðgþ1

g�1
f̂ ðx, ~l, pÞ d~l, 0 < x < L, g� 1 � ~l � gþ 1,

f̂ ð0, ~l, pÞ ¼ n0
p
dð~l � g� 1Þ, 0 < ~l � gþ 1,

f̂ ðL, ~l, pÞ ¼ 0, g� 1 � ~l < 0,

8>>>>>><
>>>>>>:
Such transformation is particularly useful for the evaporation problem,

in which the integral on the right-hand side of the transport equation is
taken from �1 to 1 (Scherer and Barichello 2009).
Let us write

ŵðx, l, pÞ ¼ ŵbðx, l, pÞ þ ŵsðx, l, pÞ:
The ballistic term ŵb satisfies

ðgþ lÞ @

@x
ŵbðx, l, pÞ þ ltŵbðx, l, pÞ ¼ 0, 0 < x < L, �1 � l � 1,

ŵbð0, l, pÞ ¼
n0
p
dðl� 1Þ, �g < l � 1,

ŵbðL, l, pÞ ¼ 0, �1 � l < �g,

8>>>>><
>>>>>:
and the scattering term ŵs obeys
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ðgþ lÞ @

@x
þ lt

� �
ŵs ¼

ls
2

ð1
�1

ŵsðx, l, pÞ dlþ q, 0 < x < L, �1 � l � 1,

ŵsð0,l, pÞ ¼ 0, �g < l � 1,

ŵsðL, l, pÞ ¼ 0, �1 � l < �g,

8>>>><
>>>>:
where

qðx, l, pÞ ¼ ls
2

ð1
�1

ŵbðx, l, pÞ dl ¼ n0ls
2p

e�xlt=ðgþ1Þ:

We note that

ŵbðx, l, pÞ ¼
n0
p
e�xlt=ðgþlÞdðl� 1Þ:

Let us express ŵsðx, l, pÞ ¼ ŵsðx, lÞ and qðx, l, pÞ ¼ qðx, lÞ when there

is no confusion. For the computation of ŵs, we discretize the integral by
the Gauss-Legendre quadrature and obtain

ðgþ liÞ
@

@x
þ lt

� �
ŵsðx, liÞ ¼

ls
2

XN
j¼1

wj ŵsðx, ljÞ þ ŵsðx, � ljÞ
h i

þ qðx, liÞ,

where li,wi (i ¼ 1, 2, :::, 2N) are abscissas and weights, respectively. We
have 0 < l1 < � � � < lN < 1 and lNþi ¼ �li (i ¼ 1, :::,N). Furthermore,
we introduce Ng as the largest integer such that �g < lNg

:

Remark 3.2. It is possible to assign different abscissas and weights for two
intervals ½�1, � gÞ and ð�g, 1�: Since we assume g is small, we use one set
of abscissas and weights for the interval ½�1, 1� as described above.

The scattering part ŵs is obtained as

ŵsðx, liÞ ¼
X2N
j¼1

ðL
0
Gðx, li; x0, ljÞqðx0, ljÞ dx0,

where the Green’s function defined for each p satisfies

ðgþ liÞ
@

@x
þ lt

� �
Gðx, li; x0, ljÞ ¼

ls
2

X2N
k¼1

wkGðx, lk; x0, ljÞ þ dðx� x0Þdij,

Gð0,li; x0, ljÞ ¼ 0, li > lNg
,

GðL, li; x0, ljÞ ¼ 0, li < lNg
,

8>>>>><
>>>>>:
where dij is the Kronecker delta.
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Let us consider the following homogeneous equation.

ðgþ liÞ
@

@x
þ lt

� �
ŵðx, liÞ ¼

ls
2

X2N
j¼1

wjŵðx, ljÞ:

We note that ŵ depends on p through lt. With separation of variables,

we can write ŵ as

ŵðx, liÞ ¼ /ð�, liÞe�x=� ,

where � is the separation constant. The function /ð�, liÞ satisfies the nor-
malization condition,

X2N
i¼1

wi/ð�, liÞ ¼
XN
i¼1

wi /ð�, liÞ þ /ð�, � liÞð Þ ¼ 1:

We obtain

/ð�, liÞ ¼
ls�
2

1
lt� � li � g

,

assuming � 6¼ ðli þ gÞ=lt: If g¼ 0 and p is real, we can prove � 6¼ li=lt
(Siewert and Wright 1999). The following orthogonality relation holds.

X2N
i¼1

wiðli þ gÞ/ð�, liÞ/ð�0, liÞ ¼ N ð�Þd��0 ,

where

Nð�Þ ¼
X2N
i¼1

wiðli þ gÞ/ð�, liÞ2:

We can find 2N eigenvalues � ¼ �n (n ¼ 1, 2, :::, 2N). The eigenvalues can
be obtained as the reciprocal of eigenvalues of the following matrix
(Amagai et al. 2020).

N�1
þ

N�1
�

� �
lt

I
I

� �
� ls

2
W W
W W

� �� �
,

where I is the identity, N6 ¼ diagð6l1 þ g,6l2 þ g, :::,6lN þ gÞ, and
fWgij ¼ wj: The subroutine ZGEEV (LAPACK subroutine for a complex

nonsymmetric matrix) was used to compute �n. Moreover, the free-space
Green’s function G0 is obtained as

G0ðx, li; x0, ljÞ ¼ 6
X

6R�n>0

wj

Nð�nÞ/ð�n, ljÞ/ð�n, liÞe
�ðx�x0Þ=�n ,

where upper signs are chosen for x > x0 and lower signs are used
for x < x0:
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Hence we can write

Gðx, li; x0, ljÞ ¼ G0ðx, li; x0, ljÞ
þ

X
R�n>0

B1ð�nÞ/ð�n, liÞe�x=�n þ
X
R�n<0

B2ð�nÞ/ð�n, liÞe�x=�n ,

where coefficients B1ð�nÞ,B2ð�nÞ are determined from boundary conditions.
We obtainX

R�n>0

B1ð�nÞ/ð�n, li1Þ þ
X
R�n<0

B2ð�nÞ/ð�n, li1Þ ¼ y1ðli1Þ, (3.1)

X
R�n>0

B1ð�nÞ/ð�n, li2Þe�L=�n þ
X
R�n<0

B2ð�nÞ/ð�n, li2Þe�L=�n ¼ y2ðli2Þ, (3.2)

where 1 � i1 � Ng,Ng < i2 � 2N,

y1ðli1Þ ¼
X
R�n<0

wj

Nð�nÞ/ð�n, ljÞ/ð�n, li1Þe
x0=�n ,

y2ðli2Þ ¼ �
X
R�n>0

wj

Nð�nÞ/ð�n, ljÞ/ð�n, li2Þe
�ðL�x0Þ=�n :

Let us multiply (3.1) and (3.2) by exp ð�x0lt=ðgþ 1ÞÞ, integrate both sides
of these equations over x0, and take the sum with respect to j. We obtainX

R�n>0

E1ð�nÞ/ð�n, li1Þ þ
X
R�n<0

E2ð�nÞ/ð�n, li1ÞeL=�n ¼ z1ðli1Þ, (3.3)

X
R�n>0

E1ð�nÞ/ð�n, li2Þe�L=�n þ
X
R�n<0

E2ð�nÞ/ð�n, li2Þ ¼ z2ðli2Þ, (3.4)

where

z1ðli1Þ ¼
X
R�n<0

ðgþ 1Þ�n
Nð�nÞðgþ 1� �nltÞ

eL=�n�Llt=ðgþ1Þ � 1½ �/ð�n, li1Þ,

z2ðli2Þ ¼
X
R�n>0

ðgþ 1Þ�n
Nð�nÞðgþ 1� �nltÞ

e�Llt=ðgþ1Þ � e�L=�n½ �/ð�n, li2Þ,

and

E1ð�nÞ ¼
X2N
j¼1

ðL
0
B1ð�nÞe�ltx

0=ðgþ1Þ dx0,

E2ð�nÞ ¼ e�L=�n
X2N
j¼1

ðL
0
B2ð�nÞe�ltx

0=ðgþ1Þ dx0:

8>>>>><
>>>>>:

Thus E1ð�nÞ,E2ð�nÞ are obtained from (3.3) and (3.4). To solve this linear
system, the subroutine ZGESV (LAPACK subroutine for a complex system
of linear equations) was used.
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Hence we obtain

ŵsðx, liÞ ¼
n0ls
2p

X2N
j¼1

ðL
0
Gðx, li; x0, ljÞe�x0lt=ðgþ1Þ dx0

¼ n0ls
2p

X
R�n>0

ðgþ 1Þ�n
Nð�nÞðgþ 1� �nltÞ

e�ltx=ðgþ1Þ � e�x=�nð Þ/ð�n, liÞ

þ n0ls
2p

X
R�n<0

ðgþ 1Þ�n
Nð�nÞðgþ 1� �nltÞ

e�xlt=ðgþ1Þ 1� eðL�xÞ=�n�ðL�xÞlt=ðgþ1Þð Þ/ð�n, liÞ

þ n0ls
2p

X
R�n>0

E1ð�nÞ/ð�n, liÞe�x=�n þ
X
R�n<0

E2ð�nÞ/ð�n, liÞeðL�xÞ=�n
� �

:

The Laplace transform of n(t) is obtained as

n̂ðpÞ ¼
ð1
�g

ŵðL, l, pÞ dl

¼
ð1
�g

ŵbðL, l, pÞ dlþ
ð1
�g

ŵsðL, l, pÞ dl:

Therefore,

n̂ðpÞ ¼ n0
p
e�Llt=ðgþ1Þ

þ n0ls
2p

X
R�n>0

ðgþ 1Þ�n
Nð�nÞðgþ 1� �nltÞ

e�Llt=ðgþ1Þ � e�L=�nð Þuð�nÞ

þ n0ls
2p

X
R�n>0

E1ð�nÞe�L=�nuð�nÞ þ
X
R�n<0

E2ð�nÞuð�nÞ
� �

,

where

uð�Þ ¼
XNg

i¼1

wi/ð�, liÞ ¼
ls�
2

XNg

i¼1

wi

lt� � li � g
:

By the inverse Laplace transform, we have

nðtÞ ¼ n0
2pi

ðcþi1

c�i1

ept

p

(
e�Llt=ðgþ1Þ

þ ls
2

X
R�n>0

ðgþ 1Þ�n
Nð�nÞðgþ 1� �nltÞ

e�Llt=ðgþ1Þ � e�L=�nð Þuð�nÞ

þ ls
2

" X
R�n>0

E1ð�nÞe�L=�nuð�nÞ þ
X
R�n<0

E2ð�nÞuð�nÞ
#)

dp,

(3.5)

where c is taken to be greater than the largest real part of any singularity.
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4. The inverse Laplace transform

Let us numerically evaluate the Bromwich integral in the inverse Laplace
transform (3.5). Although the trapezoidal rule was used in Amagai et al.
(2020), here we employed the double-exponential formula (Ooura and
Mori 1991, 1999).
We note that In̂ðcþ ix=tÞ ¼ �Rn̂ðcþ i x� p

2

� �
=tÞ because

n̂ cþ i
x� p

2

t

� �
¼

ð1
0
e�ct�iðx�p

2ÞnðtÞ dt ¼ in̂ cþ i
x
t

� �
:

For t> 0, we have

nðtÞ ¼ ect

2pt

ð1
�1

eixn̂ cþ i
x
t

� �
dx ¼ ect

pt

ð1
�1

cosx Rn̂ cþ i
x
t

� �
dx

¼ 2ect

pt

ð1
0

cosx Rn̂ cþ ix
t

� �
dx:

(4.1)

Let us introduce

/ðsÞ ¼ s
1� e�K sinhs

, K ¼ 6: (4.2)

Then the above integral can be written as

nðtÞ ¼ 2ect

pt

ð1
�1

cos ðM/ðsÞÞ Rn̂ cþ i
t
M/ðsÞ

� �
M

d
ds

/ðsÞ ds,

where x ¼ M/ðsÞ, M> 0. Let us define h ¼ p=M: To numerically evaluate
the above integral, the discretization by the trapezoidal rule is the suitable
choice (Sugihara 1997; Trefethen and Weideman 2014). By the trapezoidal
rule, we arrive at

nðtÞ � 2ect

t

Xkmax

k¼�kmax

cos M/ðsÞð Þ Rn̂ cþ iM
t
/ðsÞ

� �
/0ðsÞ, (4.3)

where kmax is an integer and s ¼ khþ p
2M : We note that /0ðsÞ ! 0 double

exponentially as s ! �1: We see that /ðsÞ ! s double exponentially as
s ! 1 and cos ðM/ khþ p

2M

� �Þ � cos Mkhþ p
2

� � ¼ 0: The choice of /ðsÞ
in (4.2) is not unique. The constant K¼ 6 was found by numerical experi-
ments (Ooura and Mori 1991). In Table A1 in Appendix A, we confirmed
that any K � 6 gives the same numerical results. Although /ðsÞ in (4.2)
sufficiently works, a more general expression /ðsÞ ¼ s½1� exp ð�2s�
að1� e�sÞ � bðes � 1ÞÞ��1 (b ¼ 1=4, a ¼ b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM ln ð1þMÞ=ð4pÞp

) has
been proposed (Ooura and Mori 1999).
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We set L ¼ 10 cm: We found c ¼ 0:04 is suitable. Time was discretized
as tj ¼ jDt (Dt ¼ 0:2 min, j ¼ 1, :::, 250). Furthermore we set ra ¼
10�8 min�1, rs ¼ 5 min�1, v0 ¼ 5 cm=min, and u ¼ 1:5 cm=min: For the
numerical calculation, parameters were chosen to be N¼ 30, kmax ¼ 40,
and M ¼ 40: To confirm the validity of these values, Tables A2–A4 in
Appendix A compare nðL, tÞ=n0 for different parameters.The computation
time was 90 sec on a laptop computer (MacBook Pro, 2.3 GHz Intel Core
i5). The result is plotted in Figure 1. In Amagai et al. (2020), the particle
number density was defined by

nðx, tÞ ¼
ð1
�1

w1ðx, l, tÞ dl, (4.4)

where w1ðx, l, tÞ is the solution to (2.1) when L ! 1: Figure 1 also shows
nðL, tÞ=n0 for comparison.
To confirm the convergence of the inverse Laplace transform, we have

tried different N, kmax, and M.

Remark 4.1. According to the error analysis in Ganapol (2008), ct must be
small. In Ganapol (2008), it is suggested to move c according to t, and the
form c ¼ �c þ a=t is proposed, where �c, a are positive constants.

5. Column experiment

A one-dimensional flow field is achieved in a column. We conducted a col-
umn experiment using adsorptive solute of zinc solution.
Before the tracer breakthrough curve was observed, ultra-pure water was

injected by the peristaltic pump (MP-1000, Eyela) for 24 hours until the
flow field became steady. The flow rate of the injected tracer solution was

Figure 1. The particle number density is plotted as a function of t. The blue curve is from (4.3)
and the red curve is from (4.4).
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controlled by the peristaltic pump. Then the tracer solution was injected to
displace the fresh water. The discharged solution was collected by the frac-
tion collector (CHF161RA, Advantec) at regular intervals. Column experi-
ments were performed at room temperature of 25–26 �C: The experiment
was conducted until the discharge concentration became equal to the influ-
ent concentration. For the sake of the accuracy of measurements, we cor-
rected the measurement time error from the tube volume and inlet volume
of the column by subtracting the time lag due to the switchover from the
breakthrough time.
The filling material is the standard sand (Tohoku silica sand No. 4,

Kitanihon Sangyo). The median diameter of the sand is 750 lm: As a
preparation, we eliminate the organic matter that may have been contained
in the sand by soaking it in HNO3 solution. The zinc solution was 2 ppm:
We set a filter on the top of the sand bed made with glass wool and put
the same filter at the bottom of the column. A column of length 12:0 cm
with internal diameter 3.1 cm was used. The bed height was L ¼ 10:7 cm
and the section area was 7:54 cm2: It was confirmed by a blank test that
the zinc was not absorbed on the surface of the column wall. The concen-
tration was measured with the atomic absorption photometer (Z-2300,
Hitachi High-Technologies), the compressor (SC820, Koki Holdings), and
the Neo Cool Circulator (CF700, Yamato). The measured porosity was
0.289 and the flow rate was 11:25 cm3=h:
Figure 2 shows the zinc breakthrough curve. The measured values from

the column experiment (black open circles) are compared with numerical
values calculated from (4.3) and (4.4) using the linear transport equation in
the slab geometry (blue dashed line) and half-space geometry (red line). In
the left panel of Figure 2, the vertical axis is the relative concentration
C=C0 and the horizontal axis is time t. The semilog plot in the right panel
of Figure 2 shows 1� C=C0 as a function of t. When numerically obtaining

Figure 2. The breakthrough curve of C=C0 (Left) and 1� C=C0 (Right) as a function of time.
The experimental data (black open circles) are compared with numerical values computed from
(4.3) and (4.4) using the linear transport equation in the slab geometry (blue dashed line) and
half-space geometry (red line).
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C=C0, we determined the parameters by the Levenberg-Marquardt algo-
rithm (Levenberg 1944; Marquardt 1963) using the FORTRAN library
MINPACK (More, Garbow, and Hillstrom 1980). The fitted values are
summarized in Table 1. The parameter values for the half space in Table 1
were obtained in Amagai et al. (2020). We note that C=C0 and n=n0 are
related as C=C0 ¼ bn=n0 with constant b, which is determined by fitting.
We see in Figure 2 that two curves from the transport equation are almost
identical with different parameter values.

6. Concluding remarks

Although solutions of the transport equation well described experimentally
obtained breakthrough curves in Amagai et al. (2020), the half space was
assumed in the formulation. To take into account the length of the column,
we gave a formulation in the slab geometry, which has both ends and
tracer particles enter from one end and exit from the other end. It should
be emphasized that indistinguishable breakthrough curves are obtained for
different sets of fitted parameters. This means that it is important to
impose the boundary conditions which correctly model the experimen-
tal setup.
For the numerical inversion of the Laplace transform, we could apply the

double-exponential formula after expressing n(t) using cosx in (4.1).
In this paper, isotropic scattering is assumed. The introduction of the

anisotropy factor g 6¼ 0 is a future issue.
The most precise geometry for the column experiment is a cylinder in

three dimensions. However, the essential nature of the transport is expected
to be seen by the one-dimensional transport equation since the experimen-
tal setup is designed so that the flow is identical in horizontal directions.
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Table 1. Fitted parameters.
rs (h

�1) v0 (cm=h) u (cm=h) b

slab 1.98 3.31 1.52 0.25
half space 2.68 4.12 1.80 0.21
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Appendix A. Parameters for numerical calculation

Table A1. The dependence of nðL, tÞ=n0 on K for N¼ 30, kmax ¼ 40, M¼ 40.
K t 5 min 10 min 15 min 20 min

0.6 �0.0451 2.77 3.59 3.79
1 1.36 3.72 4.39 4.52
2 1.38 3.73 4.39 4.53
6 1.38 3.73 4.39 4.53
10 1.38 3.73 4.39 4.53
20 1.37 3.74 4.39 4.52
30 1.49 3.71 4.33 4.52
60 3.88 4.12 3.62 3.26

Table A2. The dependence of nðL, tÞ=n0 on N for K¼ 6, kmax ¼ 40, M¼ 40.
N t 5 min 10 min 15 min 20 min

5 1.65 4.35 5.09 5.23
10 1.33 3.64 4.30 4.44
15 1.38 3.74 4.41 4.54
20 1.38 3.74 4.40 4.53
25 1.38 3.73 4.40 4.53
30 1.38 3.73 4.39 4.53
35 1.38 3.73 4.39 4.53

Table A3. The dependence of nðL, tÞ=n0 on kmax for K¼ 6, N¼ 30, M¼ 40.
kmax\t 5 min 10 min 15 min 20 min

10 �0.40 2.43 3.30 3.51
20 1.38 3.73 4.39 4.53
30 1.38 3.73 4.39 4.53
40 1.38 3.73 4.39 4.53
50 1.38 3.73 4.39 4.53

Table A4. The dependence of nðL, tÞ=n0 on M for K¼ 6, N¼ 30, kmax ¼ 40:
M\t 5 min 10 min 15 min 20 min

30 1.38 3.73 4.39 4.53
40 1.38 3.73 4.39 4.53
50 1.38 3.73 4.39 4.53
60 1.38 3.73 4.39 4.53
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