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We consider a fractional radiative transport equation, where the time Received 29 August 2016
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1. Introduction

Let us consider the following time fractional radiative transport equation with the initial condition
and Cauchy data in one dimension.

(87 + vor + 010 )) ux, 0,0

= o,(x, U)/ Pl v,V ue v, ) dv, (xt)eQ veV,
v (1)

u(x,v,0) =alx,v), x€Q, vevy,

u(x,v,t) =gk v,t), (v)el_, te(0,1),

where 3t1/ % is the Caputo fractional derivative [1] of half order given by

t
1/2 1 dru(-, 1)
3, “u(, 1) = T (l)/o N dr.

2
We note that I'(+) is the gamma function and I (%) = /7. Here we defined

Q={x1); xe R, 0<t<T} Q = (0,0), V={velR; v <|v| <v},
with positive constants ¢, v, v;. We define I'y and I'_ by

Nt ={(,v)€dQxV; v <0atx=0, £v > 0at x = £}.
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That is, for a function f (x, v), we have

—vg

flx,v)dSdv = f(0,v)dv + /vlf(ﬁ, v) dv,

F+ —V1

—vg

/ f(x,v)dev:/vlf(O,v)dv—}- f(£,v)dv.
r— )

_u
We assume
o € CLBL®(V), o5 € CHEELO(V)),
and
p e CHLO(V x V)), p>0 inQxVxV.

The phase function p(x, v, v’) is assumed to be known, whereas o, o, or both are unknown.

Remark 1.1: Anomalous diffusion is said to be subdiffusion when « € (0, 1). In the case of the time-
fractional diffusion equation, analysis for « = n/m (m,n € N, m > n) is possible once we establish
the methodology for & = 1/2 [2]. Similarly, we can in principle use the general « after we develop in
the present paper the analysis for the time-fractional radiative transport equation for ¢ = 1/2.

The time-fractional radiative transport equation is approximated by the time-fractional diffusion
equation in the asymptotic limit [3]. Inverse problems for time-fractional diffusion equations with
the Caputo derivative 97 have been intensively studied during the last decade. Uniqueness in deter-
mining « and the diffusion coefficient was proven [4]. A Carleman estimate was established for the
time-fractional diffusion equation with & = 1/2 [2]. Using the Carleman estimate technique, condi-
tional stability in determining a zeroth-order coefficient for @ = 1/2 was proven [5]. Recovering the
absorption coefficient was considered [6]. A reconstruction scheme for & was given in [7]. Simulta-
neous reconstruction of the initial status and boundary value was considered [8]. Recently, unique
continuation was proved for arbitrary « [9].

In this paper, we prove the global Lipschitz stability when determining oy(x, v) and o,(x, v) from
boundary measurements. The proof is based on Carleman estimates first established in [10]. The
methodology was first used in inverse problems for proving the global uniqueness [11]. See [12] and
references therein. Our proof particularly relies on the method developed to show the global Lipschitz
stability for the inverse source problem of parabolic equations [13]. See a review article [14] for further
details. For the usual radiative transport equation with 9, the Lipschitz stability was shown for — T <
t < T [15], for the purely absorbing case of o, = 0 [16], and for 0 <t < T [17]. The recovery of o;
was also considered in [18]. The exact controllability was proved [19] and the case that o; depends
on x, v, t was considered in [20]. See [21] and references therein for the Holder-type stability analysis
using the albedo operator.

The remainder of this paper is organized as follows. In § 2, main results are stated. We give some
physical background in § 3. In § 4, we derive a first-order equation in time by multiplying 8t1 /2 by the
fractional radiative transport equation in (1). In § 5, we establish our key Carleman estimate. In § 6,
we prove Theorems 2.1-2.3. Another Carleman estimate necessary in § 6 is derived in Appendix.

2. Main results
We define
X = H>(0, T; HY%(2 x V)) N L0, T; H*°( x V).

For an arbitrarily fixed constant M > 0, we set

U={ueX; llulx+ 19xull g1 @ x o, Tys22(vy) < M}.



754 e A. KAWAMOTO AND M. MACHIDA

Let to be an arbitrarily fixed time on (0, T). We take § > 0 such that
O<ty—dS<ty<to+d6<T.
Moreover, we set
Qs =Q X (tg — 8, +8) for0 <& < min(ty, T — ty).

Let us consider two total attenuations O't(l) (x, v) and O't(z) (x, v) with O't(l) 0,v) = Ut(z) (0,v) forallv €
V, and two scattering coefficients 0'5(1) (x,v) and 0‘5(2) (x, v) with as(l) 0,v) = 05(2) (0,v) forallv e V.
We perform boundary measurements twice for the pairs of initial and boundary values, (a1, g1) and
(a2,£>). Let u}l) and u}z) be the corresponding solutions to (1) for a;(x, v) and gj(x, v, t) (j=1,2). We
introduce a 2 x 2 matrix R(x, v, t) as
R(x,v,t) = (_“g(x’ v 1) Jvpx,v, U/)“?)(x’ v',0) dv’) .
—uy” (%, v, 1) [y p(x,v, v/)ugz) (x, v, t) dv/

We choose (a1,g1) and (a2, g2) so that det R(x, v, tp) # 0 is satisfied for a chosen time #y € (0, T).

Theorem 2.1 (Simultaneous determination of oy,05): Let u](»i) e (i=12 j=12)
||Ut(i)||LOO(QXV) <M (i=1,2), and ”Us(i)”LOO(QXV) <M (i=1,2). Moreover, we suppose u]@ €

CH(Qs; L®(V)), 8:/214](2) € Cl([tg — 8, tg + 8]; L°( x V) for j=1,2. We assume that det R(-, -, to)
# 0in Q x V. Then there exists C = C(ty, 8, M) > 0 such that

W _ @2 D_ o
lo:” = o7 n@uzay + 197 = 02l @z
2 2
< ]le j7 Gt = o) |

to+45

2
+C /

2 to+4
+Cy / /
j:l to—4 \%4

where 0 < § < min(ty, T — ty). Here, C(tp,8, M) — 00 as M — o0.

2 2 2
f Uat(u;“ —u™)[ [0 = uP)| + | - u®) ] dsdv dt
Iy

2
9,0; (u}“(o, 0.0 —u® v, t))‘ dvdt,

If one of the coefficients is known, we can determine o; or o, from a single measurement. The
following theorems can be proved similar to Theorem 2.1.

Theorem 2.2 (Determination of a;): Let u) € U (i=1,2), ||at(i) e @x vy < M (i=1,2). Moreover,
we suppose u'® € C1(Qs; L2 (V)), Btl/zu(z) € Cl([ty — 8,9 + 81; L°(Q x V), and u® (-, -, ty) # 0

in Q x V. Then there exists C = C(ty, 8, M) > 0 such that

W _ @2
lloe ™™ = o e @z vy

2
=< C H u(l)(’) ) tO) - u(Z)(" > tO) ‘

H2(L2(V))
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to+6 5 5 )
+ C/ f [‘Bt(u(l) _ u(Z))‘ + ‘8f(u(1) _ u(z))‘ + ‘atax(u“) _ u(z))‘ ] dSdv dt
to—34 F+

to+6
e / f
to—4 14

where 0 < § < min(ty, T — ty). Here, C(tp,8, M) — 00 as M — o0.

2
9,0, (u(l)(O, 1) — u®(0, v, t))‘ dvdt,

Theorem 2.3 (Determination of o5): Let u'D € U (i=1,2), ||05(i) Iz @x vy < M (i=1,2). Moreover,
we suppose u'® € C1(Qs; L®(V)), Btl/zu(z) € C'([to — 8,10 + 81; L®(Q x V), and [, p(, -, v")u®
(Vs tp) dv’ # 0in Q x V. Then there exists C = C(ty, 8, M) > 0 such that
1 2))2
||05( ) — Gs( )”HI(Q;LZ(V))

2
< C|uVC,nte) — (1)

H2(SL2(V))
)
to+8
e / /
to—35 14

where 0 < § < min(ty, T — ty). Here, C(tp,8, M) — 00 as M — o0.

to+5 2 5 5
+ C/ / |:‘3t(u(1) _ u(2))‘ + ‘3?(14(1) _ u(Z))‘ + ‘atax(u(l) . u(Z))‘ ] dSdv dr
fo ry

2
9,9, (u“)(o, 0, t) — u®(0,v, t))’ dvdt,

Remark 2.1: In Theorem 2.1, we need an a prioriassumption det R(:, -, fp) 7 0in 2 x V at the obser-
vation time ¢ = to. This nonzero condition is satisfied by the appropriate choice of (a;, g) for j=1,2.
The controllability result for (1) about how to choose (), gj) for j=1,2 is not yet known but obtained
along the same lines of the calculation (in particular, Proposition 1.1) by Yuan and Yamamoto [22],
which is concerned with a parabolic equation. See also Remark 1.3 in Machida and Yamamoto [17]
for the radiative transport equation.

3. Anomalous transport
3.1. Relation to anomalous diffusion and anomalous transport

Anomalous diffusion is often studied using fractional diffusion equations [23,24]. In particular,
anomalous diffusion is observed for tracer particles moving in an aquifer [25]. An analysis of column
experiments revealed a power-law behavior of the waiting-time function of the continuous-time ran-
dom walk [26], which has motivated the use of the fractional diffusion equations. However, recent
study shows that such fractional diffusion equations fail to explain the flow of tracer particles in
column experiments especially during short time periods [27]. When considering the fact that the
time-fractional diffusion equation is obtained in the asymptotic limit of the time-fractional radiative
transport equation for long time and large distance [3], our attention is driven to the study of the
latter equation as a more accurate model of anomalous transport.

It is known that the mass distribution of tracer particles moving in an aquifer reveals non-Gaussian
behavior [25] and the linear Boltzmann transport has been proposed [28,29]. If such flow is governed
by fractional radiative transport equations, Theorem 2.1 guarantees the global Lipschitz stability in
determining the absorption and scattering properties of the area of interest when the concentration
of tracer particles is measured with pumping wells surrounding the area. Also Theorem 2.1 might
be related to optical tomography [30], in which optical properties of absorption and scattering are
determined from boundary measurements, if propagation of light for some reason shows anomalous
transport.
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3.2. Continuous-time random walk

The fractional diffusion equation is derived from the continuous-time random walk. In the same
manner, the fractional radiative transport equation is derived from the continuous-time random walk
with velocity.

We begin with the usual continuous-time random walk in x € R, t > 0. Let ¢(x, t) be the jump
probability density function given by ¢(x, t) = A(x)w(t), where A(x) is the jump length probability
density function and w(t) is the waiting time probability density function. They are calculated as
Ax) = fooo o(x, t) dt, w(t) = ffooo @(x,t) dx. Using ¢(x, t), the probability density function n(x, t)
of just having arrived at position x at time ¢ is written as

t o0
N ) = /0 / NG, 9(x — yt — ) dyds + a(d (1),

where a(x) is the initial value. We note that the cumulative probability @ (¢) of not having moved
during t is given by

t
d()=1-— / w(s) ds. (2)
0

Thus the probability density function P(x, t) of being at (x,t) € R x [0, 00) is obtained as P(x, t) =
fotn(x, s)®(t — s) ds. Suppose that the Fourier transform of A(x) behaves like (FA)(k) ~1 —
o2k? for small k and the Laplace transform of w(t) behaves like (Lw)(s) ~ 1 — (75)* for small
s (0 < a < 1). Then it is known that P(x, t) asymptotically obeys the following diffusion equation
(o = 1) or time-fractional diffusion equation (0 < « < 1) in the limit of large x and large ¢ (see, for
example, [23]).

2
o o 2p
0P~ 0P =0.

Now, we generalize A taking velocity into account [3]. Absorption is also considered. We give

Alx;v,0) as
A0, 0") = £8P, V) + (1 — &) 8(x — vTo)8(v — V),

where & € (0,1), & € (0,&), and 79 > 0 are constants. We will give 7o below depending on w(?), &.
The first term on the right-hand side is the probability that there is no jump but the velocity changes
from v’ to v. The function p(v, v') is the probability that the target particle changes its velocity from
v’ to v when it is scattered by a scatterer. The second term shows the probability of transport that the
target particle jumps keeping its velocity without being scattered nor absorbed. Correspondingly, we
give (x, t; v, V') as (x, t; v, V') = A(x; v, V" )w(t), with the relations A.(x; v, V") = fooo o(x, t;v,v) dt,
A =&)w() = fV ffooo @(x, t;v,0") dx dv’, where we introduced the probability £, = & — & > 0 for
absorption. Then we have

t 00
nx,v,t) = / / / ny,v,9)ex —y,t —sv,v) dydv’ ds + a(x, v)8(2).
0 JVJ—0
With this 5 (x, v, t), the probability density function P(x, v, t) of being at (x,v,t) € R x V x [0, 00)

is given by P(x, v, t) = fot n(x, v, )P (¢t — s) ds, where ® is introduced in (2). In the asymptotic limit
of small k,s, we obtain

(07 + vdx + 0y) P(x, v, 1) = o5 / p(v,v")P(x, v, t) dv/,
v

where o, = &/1%, 05 = &/7%, 10 = t*/(1 — &). Thus we see that (1) is related to the continuous-
time random walk with velocity. Furthermore, it can be shown that (1) reduces to the diffusion
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equation with the absorption term in the asymptotic limit [3]. In this sense, (1) governs anomalous
transport at the mesoscopic scale, whereas the governing equation is the fractional diffusion equation
at the macroscopic scale.

4. From one-half to one

Since we have no Carleman estimates for time-fractional radiative transport equations, we begin by
obtaining an equation with the time derivative 9; by taking the ¢t-derivative of half-order in the original
equation. The following lemma ensures the relation 8} /2 8:/ g

section.

= 0; in the calculation developed in this

Lemma 4.1 (Xu-Cheng-Yamamoto [2]): Let i € C[0, T] N WH1(0, T) and
#(0) = 3;*u(0) = 0.

Then for0 < oy + o2 <1,

AT au(t) = 9 T au(h).
Let us consider differences,
) =) — 6P ),  rxv) =0 xv) — 0@ (xv),

where r:(x, v), s (x, v) € CH(Q; L2 (V) with 7,(0, v) = r5(0,v) = 0 for v € V. We define vectorsr, u
as

r(x,v) = < re(x, v) ) ) u(nv,f) = < ugl)(xﬂ):t) - u§2)(x,v,t) ) .

rs(x, ) ugl) (x,v, 1) — ugz) (x,v,1)
Similar to Yamamoto and Zhang [5], we introduce a new vector a(x, v, t) as

1172
a(x,v,t) = ulx,v,t) — ——R(x, v,0)r(x, v).

r(s)

By differentiating both sides of the above equation with respect to ¢, we obtain 9,0 as

dru(x, v, t) = dpu(x, v, t) — R(x,v,0)r(x, v). 3)

1

1
r(3)¢?
We note that

u(x,v,0) = 0.

1

Using 8,*t1/2 = 1T°(1/2), we obtain

Btl/zﬁ(x, v, 1) = 83/2u(x, v, 1) — R(x, v, 0)r(x, v).

The above equation implies

31" *(x, v,0) = 0.
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We note that by writing ot(l) ,0V as o1, o, we obtain the following time-fractional radiative transport
equation.

(8}/2 + 00y + o4 (x, v)) u(x, v, t) = os(x, v) / plx, v, v)ulx, v, 1) dv’
v

+ R, v, Or(x,v), () €Q veV, (4)
u(x,v,0)=0, x€Q, veV,
ulxv,t) =0, (xv)el_, te(0,T).

Now we can alternatively compute 9, as follows.

aa =073
1/2 /
=0, (—vaxu — o+ 05/ pudv’ + Rr)
v
= —vdy (—vaxu —ou+ 65/ pudv’ + Rr)
1%
— oy (—vaxu — o + o / pudv’ + Rr)
v
o, / P/, ) — 046 v, )
1%
+ os(x, V) / pudv” + R(x, V', H)r(x, v’)) dv’ + (8[1/2R) r
v
= v?92u — VRI,r — (vaxR +oR— Btl/zR) r
+ 2vo0.u + (v(axat) + Utz) u — (Vi + oy) 05 / plx v, v)ulx, v, 1) dv’
v
+ o5 / p(—v'E)xu(x, V', 1) — o (x, v )ulx, v, 1)
v

+ o / pudv” + R(x, v, H)r(x, v’)) dv'. (5)
1%
From (3) and (5), we arrive at the following equation.
dru(x, v, t) — v?92u — Liu(x, v, t) = / K(x,v,v)ulx, v, t) dv’
v

+f(x,v,8), (xt)eQ, vev, (6)
u(x,v,0)=0, x€Q, veV,
ulx,v,t) =0, (xv)yel_, te(0,T).
Here,
Liu(x, v, 1) = 2003 (x, v)xu(x, v, 1) + (V3,01 (x, V) + 07 (x, v)) ulx, v, 1),
K(x,v,v") = —vdx (05(x, v)p(x, v, V"))
— 03(x, v)p(x, v, V) ((V + V)0 + ¢ (x, V) + 01(x, V"))

+ 05(x, v) / o5(x, v")p(x, v, v")p(x, 0", v") dv”,
\%4



APPLICABLE ANALYSIS . 759

and
f(x,v,t) = —vR(x, v, 1) 0xr(x, V)

— |:v8xR(x, v, t) + o (x, V)R(x, v, t) — 8}/2R(x, v, t) — T

1
OrE

+ o5(x, v) f Pp(x, v, V)R, V', Hr(x, V') dv' (7)
v

R(x, v, 0)i| r(x, v)

Remark 4.1: Our argument only works in one dimension. In the multi-dimensional case (n > 1),
the principal coefficients v;v; (i,j = 1,.. ., n) of the parabolic equation corresponding to (6) do not
satisfy the uniform ellipticity for V = {v € R"; vy < |v| < v;}, and we can not derive the Carleman
estimate, which is obtained below for the one-dimensional equation.

5. Carleman estimate

Hereafter in this paper, we let C denote generic positive constants. Let us look at one component of
the vector equation (6) and consider the following equation.

Lou(x,v,t) — Liu(x, v, t) — / K, v, 0)ulx, v, ) dv' = f(x, v, 1),
v

xt)eQ wveV, (8)
u(x,v,00=0, x€, veV,
u(x,v,t) =0, (xv)yel_, te(0,T),

where
Lou(x,v,t) = dsu(x, v, t) — vzafu(x, v, t).
Let d € C*(Q) be a function such that
dix) >0 for xe &, dd(x) <0 for xeQ.
As was done in [13,14,31,32], we use the weight function « as

ek d(x) _ ezM|d||c(§z)

alx,t) = T . 9)
We define
e)\ d(x)
v =Ty
We set
z2(x, v, 1) = Dy (x, v, 1).

We note that < 0in 2 x (0, T), and
z(x,v,0) = z(x,v, T) = 0, 0xz(x,v,0) = dyz(x, v, T) = 0,

for (x,v) € 2 x V.
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Proposition 5.1 (Carleman estimate): There exists Lo > 0 such that for arbitrary A > ro, we can
choose sy = so(A) > 0 and there exists C = C(sp, Lo) > 0 such that the following estimate holds for all
s > so and all u € U which satisfies (8).

1
/ |:—|3tu|2 + sA2o|ocul* + s3k4g03|u|2i| e> dx dv dt
QxV LS®

T
<C f17e* dx dv dt + CeCWS/ / (lul* + 10;ul* 4 |05ul*) dSdv dt
QxV 0 ry

T
+ Ce“Ws / / |05u(0, v, 1)|* dt dv. (10)
vJo
Proof: 1t is sufficient to show the Carleman estimate for Lou. Suppose we have

1
/ / [—|8tu|2+5A2<p|8xu|2+s3k4g03|u|2] eX* dx dt dv
vJQLsy

T
5C//|Lou|2ezsa dxdtdu+CeC<“S/ / (lul* + 19,ul® 4 [05ul*) dSdv dt
vJQ 0 Jry

T
+ CeCWS/ / 10,1(0, v, £)|? dt dv. (11)
vV JOo
Since
2
|Loul* < C|f* + C|Liul* + C ‘ / K(x, 0,0 )u(x, ', 1) dv’
\%4
2
< C|f|> + Claxul® + Clul* + C ‘/ K(x, v, 0)ulx, v/, 1) dv'|
14

we obtain

1
/ / |:—|8tu|2 + sA?@|ocul® + s3k4¢3|u|2] e2* dx dt dv
vJQLsy

2
5/[|:CLf|2+C|8xu|2+C|u|2+C'/ K(x, v, V)u(x, v, t) dv’ i|e25“dxdtdv
vJq v
T
+Cecm3/ / (1ul* + |Beul* + [35ul*) dSdvdt
o Jry

T
+Cec<x>sf/ 185140, v, £)|? dt dv.
vV Jo

o

= C[ / <f [lu(X, v/, t)|2 + [0xu(x, v/,t)|2] dv/> eZSa dxdt dv
vJQ \JV

< C|V|/ /(|u(x,v,t)|2+ |9xu(x, v, £)]*)e** dx dt dv, (12)
vJQ

If we notice

2
€2 dxdt dv

/ K(x, v, V)u(x, v, 1) dv’
v
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we have
1
/ / |:—|8tu|2 + sA%@|0cul* + 53A4g03|u|2:| e** dx dt dv
vJQLSy
2 2sa 2 2\ .25
§C//Lf| e dxdtdv+C//(|8xu| + |u]*) e dxdt dv
vJQ VJQ

T
+CeC<*>S/ / (lul* + 10:ul* 4 [05ul*) dSdv dt
0o Jry

T
+ CetWs / f 10,1(0, v, )|? dt dv.
vV JO

Taking sufficiently large s> 0, we can absorb the second term on the right-hand side of the above
inequality and we obtain the Carleman estimate (10). Below we will derive (11).
Let us define

Pz :=¢e*Lo(e*%2) = e*“Lyu.
We split Pz into three parts:

Pz = P1z+ Pz — Ryz,

where
Piz= —vzaﬁz — $2A20% (3ed)*v*z — s(8;)z,
Pyz = 0z + 2$A<p(8xd)v28xz,
Roz = —s)2p(3cd)*v?z — s)»ga(a,%d)vzz.
We note that
|P1z + PZZ”%z(QXV) = 2||Pz||i2(Q><V) + 2||ROZ“%}(QXV)'
Here,

1Pz + Pazllfa gy = IP1ZI T2 vy + IP22N 22 gy +2 / (P12)(P,z) dx dv dt.
QxV
Therefore we have
1
E”PZZ”iZ(QXV) + /QXV(PIZ)(PZZ) dxdv dt =< ”PZ”]%Z(QX\/) + ”ROZ”?‘Z(QX‘/)- (13)

Let us calculate the left-hand side of the above inequality term by term. First, using the inequality
lz1 + 22> = 1lz11> = |22|? (21,22 € C), we have for any & € (0, 1],

Paels ey = [ [ Pl drdrde
vJQ

1
zsf/—lez|2dxdtdv
vJQ s¢

1
= f/ / —|8t2|2 dxdtdv — 481}?/ / S)Lz(p(axd)2|ax2|2dxdtdv, (14)
2 \%4 QS(p vJa
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The second term can be estimated as follows. Let us write

f (P12)(Pyz)dxdvdt =1, + I, + I3 + Iy + I,
QxV

where

2 Btz) dxdv dt,

(S
B

/ (—s*2%¢ (3cd)*v?z) (3;2) dx dv dt,
xV

o

0;z
0z

2 2$k<p(8xd)v28xz) dx dv dt,

]
<

/)

/ —5*120%(3xd)*v%2) (250 (3xd)v*dyz) dx dv dt,

Qx

Is = / (—s(3)z) (3iz + 25Ag0(8xd)v23xz) dxdvdt.
QxV

We can compute I; through Is using integration by parts and the Schwarz inequality. Note that
z(x,v,t) = 0;z(x,v,t) = 0in '_ x (0, T) because u(x,v,t) = 0, (x,v,t) € I'_ x (0, T). We have

) dr. (15)
x=0

%
+ / 02 (8,2) (9;2) dv
x={ -

T V1
I =— / ( f v2(0,2) (8;2) dv
0 ) — v1

For the second term, there exists C > 0 such that

—//skw(axd)v48x|8xz|2dxdtdv
vJQ
z/ /5A2¢(8xd)2v4|8xz|2dxdtdv—C/fs)«pwlezdxdtdv
vJq vJQ
T
—/ /(s)»go(axd)v4|8xz|2|xzz+sk(p(axd)v4|8xz|2|x=0) dv dt. (16)
0 \%4
We can estimate the third term as

1
I = __f /szkzwz(axd)2v28t|z|2dxdtdv > —c/ / s* 229> |2|* dx dt dv. (17)
2JvJq vJQ

The fourth term is estimated as

—/ /53A3¢3(8xd)3v48x|z|2dxdtdv
VJQ
33/ f s3x4<p3(axd)4v4|z|2dxdtdv—c/ /53A3¢3|z|2dxdtdv
vJQ vJQ
%
+ / 0 (02 dv
x=0 -

T U1
—/ 53A3</ 0> (0xd)>v*|z)2 dv
0 Vo = V1

) dt. (18)
x=0
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The last term I5 is computed as

1
Is :__/ f s(ata)8t|z|2dxdtdv—/ / 220 (8xd) () v* By | 2|* dx dt dv
2JvJq vJQ

> —C(A)/ /(s<p3+52<p3)|z|2dxdtdv
vJQ

T V1 —vo
- / 52A< f 0Bd)(B)v?|z)P dv|  + / @ (3ed) (3;)v?|2)? dv
0 Vo x={ -

V1

) dt.
x=0

By putting (15) through (19) together, we obtain
/ f sA2(Ocd)?v?|0,2)* dx dt dv + 3 f / SA40 (0.d) vtz dx dt dv
vJq vJQ
gf (Plz)(Pzz)dxdvdt—l-C//sk<p|8xz|2dxdtdv
QxV VJQ

+Cf /(s3k3(p3 + $2229%)|z)? dx dt dv + C(A)/ /(s<p3 + s2¢%)|z)? dx dt dv
vJQ vJQ
+B)

where

T V1
B= / ( / v2(8,2) (9;2) dv
0 Vo =

%
+ / v2(8,2) (8;2) dv
x=/{

-V

) dt
x=0

T
+ / / (shp(dxd)v?(0ez|?| _, + shp(Dxd)v*|dyz|?| _,) dvdt
0 \4

T V1 —Vo
+/ (/ 22393 (0,d) vtz dv +/ 1303 (0.d)> vt )22 dv
0 vo x={ —v

T V1
+/ s2A (/ @ (0cd) (8,0)v?|2]% dv
0 v

0

) at
x=0

—p
+ f 90(3xd)(3t0l)v2|Z|2 dv
x={ -

V1

The remainder term ||Roz|| is estimated as follows.

2

L2(QxV)

||R0z||,2_Z(QXv) <C / f (22 %0? + 22202 |2)* dx dt dv.
vJQ

Let us apply the estimates (14), (20), (21) in (13). For sufficiently small &, we have
1
/ / |:—|8tz|2 + sA2g|0.z)? + s3k4<p3|z|2i| dx dt dv
vJQLSY
< C/ / |Pz|? dxdt dv + C/ / sA@|0yz|? dx dt dv
vJQ vJQ
+ Cf /(52A4<p2 + $2230° 4+ ?02¢% + 2220%)|2)? dx dt dv
VJQ

+ C(A)/ /(52¢3 + s¢°)|z|? dx dt dv + CB.
VJaQ

) .
x=0

(19)

(20)

1)

(22)
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The boundary term is estimated as
T
B < CeCWSf / (121> + 132I* + |9x21?) dSdv dt
0o Jry

T
+ CetWs / / 10,2(0, v, £)|>dv dt. (23)
0 \%4

Therefore for sufficiently large s, A, we obtain

1
//|:—|8tu|2+5A2¢|8xu|2+s3k4<p3|u|2:| e>* dx dt dv
vJQLs¢
§C/ / |Lou|*e** dxdtdv+C/fsk¢|8xu|2e25“dxdtdv

vJQ vJQ

+C/ f(szk4¢2+s3k3¢3)|u|2ezsa dxdtdv+C(X)/ / s20° |u|?e®* dx dt dv

vJQ VJQ
T
+CeC<“S/ / (lul* + |Bul” + |35ul*) dSdv dt
0o Jry

T
+ CeCMs / / 10,1(0, v, £)|>dv dt. (24)
0 Vv

The second, third and fourth terms on the right-hand side of (24) can be absorbed in the left-hand
side, and (11) is derived. Thus the proof is complete. [

Remark 5.1: The proof is similar to the calculation in [14,31,32] in the sense that the same weight
function is used. However, our equation contains the integral term, and furthermore the surface
integral appears in the Carleman estimate due to the half-range boundary condition in (8).

6. Proofs of Theorems 2.1, 2.2, and 2.3
6.1. Proof of Theorem 2.1

Here we prove Theorem 2.1 by making use of Proposition 5.1.
Let us recall that u satisfies (6). We set

y(x,v,t) = drulx, v, t).
We obtain
dy = v2 0%y + Ly + / K(x,v,0)y(x v/, ) dv' + 0,£(x, v, £), (25)
1%

where each component of y satisfies y;(x, v,t) = 0onI'_ x (0, T) (j=1,2). For 0 < ty < T, we have

fj(x) v, tO) = )’j(x> v, tO) - Uza;%uj(x) v, tO) - Ll uj(xa v, tO) - / K(x) v, U/)uj(x) U/) tO) dv/: (26)
\4

forj=1,2.
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We consider the Carleman estimate for (25) on Q;. We here use the following weight function for
the Carleman estimate instead of a(x, t) in (9).
e)»d(x) _ eZ)\Hdllc(ﬁ)

(t—to+8)(to+8—1)

as(x,t) =

We define
ekd(x)
t—tg+8)(ty+8—1)

We can readily see that Proposition 5.1 holds true for t € (ty — 8,1ty + 8) instead of t € (0, T'). For
a sufficiently large fixed A > 0, we can write the Carleman estimate in Proposition 5.1 as

@s (x, t) =

// [—Iatyjl + sps|0xyl* +S§0§’|yj|2i| e** dx dt dv
Qs

to+6
< c/ / |9 f; |22 dxdtdv—i—CeCS/ / (Iyj1> + 13ey;1* + |9yj1*) dSdv dt
to—3o r;

to+35
Ce® fv /t ) 19,0, v, )| dt dv, (27)

forj=1,2.
To estimate f axy 10tuj(x, v, 1o) |2e25%5(%10) dx dv from above, we note that

lim e¥%®h — ¢ for x € Q.

t—typ—38+0

Hence we have

to
/ [yjx, v, t0)]? 2% 510) dxe dp = f 3 ( f lyj(x, v, ) |22 o0 dxdv) dt
QxV 8 QxV

to—

to
= / / (21yjl19ey;] + 25(3rexs)|yjl*) e** 1 dtdx dv.
axv Ji-s

We can further estimate the above inequality by noting that |3;c5| < Ce7 and using

1
jllony) = (%wm )(&/‘W,) < Sa ol + 5uly P

and applying (27). We obtain

f b/j(x, v, 1‘0)|2 e2525(50) qy dy
Qx

<Cf/Q ( |8ty]| +s wglyjlz) eX0 0 dx dt dv
6}

to+8
< _/ / |8tf|2e25a5(x,t)dxdtdv+CeCS/ / (|y]|2 + |aty]|2+ |8xy]|2) deUdt
SV to—8 JI4

CS t0+8 |8 . 2
i (0, v, )" dt dv.
fo—
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That is,

C
/ |8tuj(x,v,t0)|2625a5(x’t°)dxdv < —// |8t]§-|2e25°“3(x’t) dxdtdv
QxV S JvJQs
to+4
+Cecsf / (19:uil* + 107w + |9x9;uj]*) dS dv dt
to—8 JTy

to+5
+Cecs// |90, (0, v, 1)|* dt dv,
V Jty—48

for j= 1,2. By taking the weighted L norm of (26) using the above inequality, we obtain

/ [ﬁ(x, v, to)|2 e () dx dy
QxV

IA

./sz v |, v, t0) | €25050) dxcdv + Ce™ [y, -, o) ||12LIZ(Q;L2(V))
X

C 2
< / |8t]§~|2e25°‘5(x’t) dxdv dt + Ce® i -, to) ||H2(S2;L2(V))
QxV

IA

to+4
+CeCS/ f (18ej1* + 197 uj1* + 1059;u51*) dSdv dt
to—5 ry

to+6
+ Ce / / 193140, v, )| dt dv, (28)
V Jty—8

where the integral term on the right-hand side of (26) was estimated by a calculation similar to (12).
By differentiating (7), we obtain

£ (x, v, 1) = —VIR(x, v, ) Dyr(x, V)

- |:v8t8xR(x, v, £) + 04 (%, V)3 R(x, v, 1) — 30, *R(x, v, £)

1
+WR(9C, v, 0)j| r(x, v)

+ o5(x, v)/ P, v,v)0R(x, v, Hr(x, v') dv'.
v

Thus, we have

/ / |91 2e*® ! dx dt dv
VJQs

= C/ / (|7‘t|2 + |3x7’t|2 + |r5|2 + |8xr5|2) e250506t) 45 df du
VJQs

< C/ (Irel? + 19xre]® + [rsl® + 195rs]?) €20 &) dx dv. (29)
QxV
Here, since as(x, t) < as(x, tp) was used, C depends on #y and §. By (28) and (29), we obtain

/ w(x, v, to) |2 e255(510) dx dy
QxV

C 2
== / (18272 + el 4 [0xrs | + 1r5]?) €450 dedv + Ce i 10) [ g2 v
QxV ’
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to+48
+ Cecsf ) / (18ei1* + 197 wjl* + 1850,45]*) dSdv dt
to— Iy

to+6
+Cecsf/ |9x0;4;(0, v, 1)|* dt dv, (30)
V Jty—48

where j=1,2.
Let us estimate f axy it v, to) |2e25%5(%10) dx dv from below in terms of 7, and 7,. For this purpose,
we use the following proposition.

Proposition 6.1: Suppose w(x, v) satisfies
Aw(x, v) + A(x, vV)W(x, v) + / D(x, v, v)w(x,v') dv’ = F(x, v),
%

where A € L®(Q2 x V)>*2 and D € L®(Q x V x V)**2, Then for sufficiently large s > 0, there exists
a constant C > 0 such that

/ [Iaxw(x, V)| + 2 |w(x, v)|2] e2s (o0 dx dy < C/ [F(x, v)|? €24 &) dx dy,
QxV QxV

forallw e HY(L2(V))? and w(0,v) = 0,v € V.

Proof: Let us express A, D, w, and F as
Al Ap D1 Dy wi F
A= , D= . w= ., F= .
<A21 Axn Dy Dp w )

w1 (X, v) + Aq (x, V)W (x, v)+/ Dy (x, v, 0 )Wy (x,v)) dv' = Fy(x,v),
14

We have

w2 (X, v) + Ax (x, VIWa (x, v)+/ D (x, v,V )Wy (x,v') dv' = Fy(x, v),
\%4
where

F1(x,v) = F1(x,v) — A (x, v)wa(x, v)—/ D12(x, v, V) wa(x,v) dv/,
Vv

F>(x,v) = Fa(x, v) — As1(x, v)wy (x,v) — /VD21(x,v, Vw0 dv'.
If we use Lemma A.1 in Appendix, we obtain
/Q v (13w1 (6, v) 2 + s w1 (x5, 0) 2 + [9:w2 (x, 0) |2 + 52 wa (x, v)]%) 24 0) dx dv
X
S C/ (|F1(x’ U)|2—|— |F2(x, U)|2) ezsaé(x,to)dxdv
QxV

< C/ (IF1(x, v)* + [F2(x,v)[%) dxdv +c/ (Iw1 (x> + [wa(x, v)|?) dxdv.
QxV QxV

The proof is complete by noticing that terms [}, |w;(x, v)|* dv (j=1,2) can be absorbed to the left-
hand side if s is sufficiently large. [
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Recall that we assumed det R(x, v, tp) # 0 and |v| > vg > 0. We apply the above Proposition after
rewriting (7) as

1

Oxr(x, _—
<% V) + VR(x, v, ty)

X (vaxR(x, v, to) + or(x, V)R(x, v, ty) — atl/zR(x, v, 1) — r

1
WR()(, v, 0)) r(x, v)
2
+/ ( Y v, u)R( W) (x,0)) dv’
; vR(x,v,to)px’U’v x v, 1) ) r(x,v) dv

-1
= —f(x,v,tp).
vR(x, v, ty) (% v, 7o)

By 1/R we denote the inverse matrix of R, thatis, 1/R = R~1. We obtain
/ (|8xrt|2 +52|7't|2 + |8x7’s|2 + 52|7’s|2) ezsaa(x,to) dxdv
QxV

2
<C). f [fi (26, v, o) 7e*% ) dx d. (31)
=1 QxV

Thus we have

C
(1 - —) / (18272 + Irel? 4 [0xrs|* + [rl?) 9050 dxedo
S QxV

2
< Ce® Y i o) ||22<Q;LZ<V))
j:

1

2 to+3

+CeCSZ/ / (19ei1* + 192w + |9x3,u;1%) dSdv dt
j=1 to—3 Iy

to+8

2
+ Ce Z / / 1091 (0, v, 1)) dt dv.
j=1 Vit

-3
If we take sufficiently large s > 0, we obtain the stability estimate in Theorem 2.1.

6.2. Proof of Theorem 2.2

Instead of the vector-valued r(x, v), u(x, v, t), we introduce
rov) =), utnut) = uV v - u@ 0.

Correspondingly, we have R(x, v, t) = _ugz) (x, v, t). We can carry out almost the identical calculation
in § 4 and § 6.1 with these r(x, v), u(x, v, t). As a result, we similarly obtain the stability estimate in
Theorem 2.2.
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Proof of Theorem 2.3

Instead of the vector-valued r(x, v), u(x, v, t), we introduce

r(x, v) = rs(x, v), u(x, v, t) = u(l)(x, v, t) — u(z)(x, v, t).

In this case, we have R(x, v, t) = f v P, v )uﬁ” (x,v', ) dv’. We can carry out almost the same cal-
culation in § 4 and § 6.1 with these r(x, v), u(x, v, t). As a result, we similarly obtain the stability
estimate in Theorem 2.3.
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Appendix
Let us consider
A w(x, v) + b(x, v)w(x,v) + / c(x, v, V)w(x, v') dv” = F(x,v), (A1)
v

where b € L*°(Q2 x V)andc € L*°(Q x V x V).

Lemma A.1: For sufficiently large s > 0, there exists a constant C > 0 such that

/ [laxw(x, V)? + § |w(x, v)|2] e (oh) dx dy < C/ |E(x, v)|? €2 ®10) dx dy,
QxVv %

X

forallw e HYQ;L2(V)) satisfying (A1) and w(0,v) = 0,v € V.

Proof: Hereafter we let C denote generic constants which do not depend on s but may depend on A.
Let us set W = we™*(-10) and define P by

Bip = 0 (e ac)).

Then we have
PW = 3, — 525 (- 1) () W.
Taking L?-norm for P, we obtain

~ 2 n o~ P ~
1Pw] 20y = 105172 ey + S35 10) Bxd) Wil T2 . )

—2 f (22) (105 10) (0xd) ) dxdv
QxV

> c/ (18xw|* + s*|#]*) dxdv —/
QxV Q

zC/ (|8xiv|2+sz|17v\2)dxdv—C/ s|w|? dx dv,
QxV QxV

sAQs (- 1) (Bxd) 3| W|* dx dv
\'4

X

where we could drop the boundary term which arose from integration by parts because d,d < 0 in Q and w(0,-) =0
in V. Hence we have

/ (186w + 1) dudo < C[[Pi]}aqyey, + c/ sliw)? dx dv. (A2)
QxV QxV
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Taking sufficiently large s > 0, we may absorb the second term on the right-hand side of (A2) and we have

/szxv (19:%]* + s*[#]*) dxdv < C Hﬁv‘/“iz(Qx‘/) .

From the above equation for w, we arrive at the following inequality for w.

/ [18xw(x, v)[2 + 5% [w(x, v) [ ] 2 @) dxdv < C / [0, w|? €25 510 dy dy.
QxV QxV

Since

2

>

[o.w|> < CIF)® + Clw|*> + C )/ c(x, v, v )w(x, v') dv’
14

we obtain

/ [\wa(x, V)1 + s% [wix, v)lz] X0 ®00) qy gy
QxV

< C/ |F|? e¥0 &0 dy dy + C/ |w]? €254 50) dy dy
QxV QxV

+C[
QxV

< C/ |F‘2 eZSaa(x,t()) dxdv + C/ |W|2 eZsct,;(x,tg) dx dv,
QxV QxV

2
25 (xt0) dx dv

/ c(x, v, V)W, v) dv’
v

where we noted that ¢ € L°°(22 x V x V) and used the fact that, by the Schwarz inequality,

/S;XV

2
ebag(x,to) dxdv < C/ |W|2 eZsota(x,to) dxdv.
QxV

/ c(x, v,V )w(x, v') dv’
v
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(A3)

(A4)

Taking sufficiently large s > 0, we can absorb the second term on the right-hand side of (A4) to the left-hand side. Thus

we obtain the estimate in Lemma A.1.
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