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1. Introduction

Optical tomography is an imaging modality with near-infrared
light [1-5]. Compared to the inverse problem of X-ray computed
tomography, the inverse problem of optical tomography is more ill-
posed since light is strongly scattered. Quite often arrays of optical
fibers are used to detect outgoing light on the boundary. One way
to improve the resolution of reconstructed images is to increase
measured data. Noncontact optical tomography can readily acquire
a large number of source-detector pairs [3]. In a typical noncon-
tact optical tomography, a source-detector pair consists of a point
source by raster scanning a collimated laser beam and a pixel of a
CCD camera [6]. Since the energy density of light in random me-
dia such as biological tissue obeys the diffusion equation in the
macroscopic regime, in which the propagation distance of light is
much larger than the transport mean free path, optical tomogra-
phy is usually formulated as an inverse problem of the diffusion
equation. However, the diffusion approximation breaks in optically
thin layers, near boundaries, and in strongly absorbing media. In
this mesoscopic regime, in which the propagation distance of light
is comparable to the transport mean free path, we need to use the
radiative transport equation [7,8], which has angular variables that
do not exist in the diffusion equation.
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In this paper, we consider noncontact optical tomography based
on the radiative transport equation without making the diffusion
approximation. We illuminate the boundary (the x — y plane at z =
0) of the half space in which the target inhomogeneity is embed-
ded and measure the reflected light on the boundary. The Fourier
transform is performed to the data from boundary measurements
for source-detector pairs. By the use of spatially modulated beams
of structured illumination [9], we can omit the Fourier transform
for source positions. Thus the number of measurements can be re-
duced compared with raster scanned point sources. In this setup of
optical tomography with structured illumination, improvement of
spatial resolution was observed [10]. Absorbers of different struc-
tures can be reconstructed by using bi-dimensional source patterns
[11]. The use of angular-dependence of structured light reflectance
[12] and dense sampling [13] were proposed. Albeit structured il-
lumination is promising, optical tomography with structured illu-
mination has been mostly limited to the inverse problem of the
diffusion equation. Below we will develop transport-based optical
tomography for structured illumination. In our optical tomography
the absorption coefficient is recovered from boundary data directly
measured in the spatial-frequency domain. A reasonably low-cost
computation is achieved with algorithms using rotated reference
frames.

In the half-space or slab geometry, it is known that plane-wave
decomposition is useful [3,14,15]. Different numerical algorithms
to compute the Green’s function for the radiative transport equa-
tion as a sum of plane waves have been developed [16-28]. In
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the case of isotropic scattering, in addition to [29-31], the three-
dimensional radiative transport equation was considered by the
pseudo-problem approach [15,32] and the Fy method [33-35]. By
using discrete ordinates and plane-wave decomposition, Kim gave
the Green’s function as a sum of eigenmodes which are labeled
by eigenvalues appearing in the corresponding one-dimensional
problem [18]. Kim and his collaborators have applied the method
to optical tomography [36-38]. Markel showed that eigenmodes
in the Green’s function with plane-wave decomposition are effi-
ciently computed with the help of spherical-harmonic expansion
in rotated reference frames [22]. Markel's method of rotated refer-
ence frames (MRRF) and has been intensively developed for the
three-dimensional radiative transport equation in the half-space
and slab geometry [39-44]. Optical tomography using the method
of rotated reference frames was proposed [45] and is verified by
simulation and experiment [46]. This method of rotated reference
frames, however, sometimes suffers from numerical instability. The
recently proposed three-dimensional Fy method also uses plane-
wave decomposition together with rotated reference frames [21].

Let r = (p,z) be a vector in R3, where p € R? is a vector in
the x — y plane. We consider a medium occupying the half-space
(z>0) in which light propagation is characterized by the absorp-
tion parameter /4o and scattering parameter us. We assume that
nonnegative , depends on r and us = [is is a positive constant.
We write (q(r) as

Wa(T) = flg + Spa(T),
where i, is a constant. We introduce 7(r) as

Ska(r) (1_w)8ua(r)
i -,

a

n(r) =

where @ = fis/fir (0<w<1) is the albedo for single scattering
and
fe = fla + fLs.
We define
Ri:{reR3;z>0}, s2 = {§eSz; i,u,>0},
where u is the cosine of the polar angle of §, and
Ie={(r3) eR’ xsi; z=0}.
Let I(r,§) (r e R3, § e $?) be the specific intensity of light at posi-
tion r traveling in direction §. We take the unit of length to be
1
= i (1.1)

The specific intensity I(r, §) obeys the radiative transport equa-
tion,

§-VIr, 8§+ (A +mIr,8) = [, p@ §)Ir§)ds,
(r,8) eR3 x 2, (1.2)
I(r.$) =f(p.8), .8 el_,

where 7(r) is absorption inhomogeneity and f(p, §) is the incident
beam. The scattering phase function p(§, §) is normalized as

/ p(5.8)ds =1,
52

Let N be an integer. Assuming rotational symmetry we model
p(.§) as

§e s

L
pG.§) = %Zﬂm(s‘vs”)

22221

1=0 m=-1

Yim )Y, (8),

where L>0, Bg=1, 0< B, <2l+1 for I>1, and P, and Y, are
Legendre polynomials and spherical harmonics, respectively. Using
associated Legendre polynomials P, Y}, are given by

- e

Here, ¢ is the azimuthal angle of §. The symbol * is used for com-
plex conjugate. In the case of §; = (21 + 1)g! and L = oo, p(8, §)is
called the Henyey-Greenstein model [47]. The constant g € (—1,1)
is called the scattering asymmetry parameter.

By using the radiative transport equation instead of the diffu-
sion equation, we will generalize the noncontact diffuse optical to-
mography with structured illumination proposed by Lukic, Markel,
and Schotland [48], which was also experimentally justified [49].
The remainder of this paper is organized as follows. We derive the
linearized inverse problem in Section 2. Section 3 is devoted to
the singular eigenfunctions and Green’s function. In Section 4 and
Section 5, MRRF and the three-dimensional Fy method are de-
scribed. In Section 4, we formulate MRRF by expanding the sin-
gular eigenfunctions with spherical harmonics. In Section 6 we be-
gin by giving the spatially modulated beam and consider how we
can reconstruct 7(r) after obtaining two specific intensities Is(')(r, $)
(i =1, 2). Numerical implementation is done in Section 7. Finally in
Section 8, we make concluding remarks. Appendix A is devoted to
the Fy method for the slab geometry. The calculation of the for-
ward data is presented in Appendix B.

2. Born approximation

Let I©(r, §) be the specific intensity for 7(r) = 0, which obeys

(8- V+1)IOr.8) = [, p(8.8)IO(r.§)ds
(r,8) e R} x 2, (2.1)
f(p.8), (r§el_

We consider the Born series [3],

1(r,§):1<°>(r,s*>—// G(r,8: v, §)n()I(r,§) drds,
s2 JR3

1O, 8) =

where the Green’s function G(r, §; rg, §y) satisfies

§-VG(r,8;19,8) + G(r, 8,19, So)

=@ [, p(§.8)G(r 819, $) d§
+8(r—rg)8(§—5p), (.8 eR3 xs?,
G(r,§;ry,8) =0, (rS8el_.

If |7l 2 ®3) is sufficiently small, we can write
+

I(r,8) = 19(r.$)

- f Gr s r
s JR3

Let us subtract the ballistic term by expressing I? (r, §) as
1O, 8 =1,(r, 9§ + r,9).
Here, I,(r, §) satisfies

§-VIy(r. 8 +1,r.8) =0
I(r,8) = f(r,$),

and I (r, §) satisfies
§.-VI(r, 8 +I(r,8)

Sm@E)HIO ', §)dr'ds'. (2.2)

(r,8) e ]Ri x S2,
(r,§)el_,

= [, p$ §)(r,§)ds
+S[f1(r,$), (r,8§) eR3 xS,
L(r.$) =0, (rel._.

where

SLFI(r. §) = wlzp(s‘,s")lh(r,s")d.?'.
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We have

R , e—lz—z’\
h$) = [ [ s0-p

xi' f(p'.§)8() dr'ds
=e”f(p.9),

for §e s2, and I, = 0 for § € S2. Hence

5(-5)

SIf1(r, §) = w/ p(5.§),(r.§) d§
S2?
= we*Z/ p(8.8)f(p.5)ds.
st
Thus the rest is to compute the scattering term given by

Is(r,§):// Gr.§ ¥ §)S[Fl(r . §)drds.
e Jr2

3. Preliminaries

Both of MRRF (the method of rotated reference frames) and
the three-dimensional Fy method are constructed from the three-
dimensional Case’s method [50]. Polynomials g and p}" are in-
troduced in Section 3.1. Singular eigenfunctions are explained in
Section 3.2 and Section 3.3. In Section 3.4, the Green’s function is
given in terms of singular eigenfunctions.

3.1. Polynomials

Let us begin by introducing h; (I=0,1,...) as

0 {21+1wﬂ,, 0<l<IL,
l:

21+1, I>L

The normalized Chandrasekhar polynomials g"'(v) (m=>0, [>m,
v € R) are given by the three-term recurrence relation [51,52]

vhigl(v) =/ (I +1)2 —m2g[, (v) + VI2 —m2g" , (v),

with the initial term

g (v) = @2m-nir v/ (2m)!
m a /(2m)! —o2mml

Moreover we introduce the polynomials p/"(1) (m=0, [>m)
as

l
PP = (D™ G R (1 = )
(I-m)! dm
=V Trmyt dumn 1P

The polynomials satisfy the three-term recurrence relation

V2 —m2pm (w) — 1+ 1)pup™ (1)
T D2, () =0

3.2. Singular eigenfunctions for one dimension

In one-dimensional transport theory, singular eigenfunctions
¢™(v, u) are given by [53-55]

m _mv gm(v M)
S 2T -

where P denotes the Cauchy principal value and

+amw)(1-p2) "W - ),

L
g, ) =Y Bl (gl (v).

I=|m|

Here |m| <L and v € R are eigenvalues; v has discrete values ivj'."

(v}11 >1, j=0,1,...,M™ —1) and the continuous spectrum be-

tween —1 and 1. The number M™ of discrete eigenvalues depends
on » and f;. The function A™(v) is given by

1 om
Ay =1-2% 7’/ SO yzyiml gy
-1 vV—u
Singular eigenfunctions are normalized as
1
m|
/1 o™, w)(1-p?)" dp =1

We note that

m (l_m)'
g'w) =1 ,/m

1
x [ m o @ - p2y MR e dp
-1
Discrete eigenvalues are roots of A™, i.e., A”‘(v]r.”) =0, where

_mw g

m _ _ 12y|m|
A"(w) =1 7 ) wou wH)™du.

We have the following orthogonality relations [53-55]
1
[ 1o wem o w1 - 2

where the Kronecker delta §,,, is replaced by the Dirac delta
8(v —v") if v, V" are in the continuous spectrum. The normaliza-
tion factor N™(v) is given by

Mdp = N ()80,

m my AAT (W) om
Nm(])) _ ( ) g(\)] 5 J T W:Vm’ V= Vj )
VAT (V)A™ (V) (1 = p2)~Iml e (-1,1),

where A™(v) = lim_ g+ A™(v £ i€).
Finally we introduce

DY(E) = @™ (v, ) (1 — p?

3.3. Singular eigenfunctions for three dimensions

)|m|/26im(p

Let ¥ (8) € C be a function of § € S2. By the operator R;, defined
in [21], angles in R, ¥ (8) are measured in the rotated reference

frame whose z-axis lies in the direction of a unit vector kec3 (lAc-
k=1).
If ¥ (§) € C has the form

o0

I
Z Z 1plelm (§),

[=0 m=-I
then we have [22,56,57]

w(SA) = ll/lm eC,

o0 1
Rf{lh(g) = Z Z wlm
=0 m=-1
1
< 3 e med,, (6p)Yim ),
=1
) 1
R,r‘l I//(s\) = Z Z I//lm

=0 m=—I
!
v Z ezmwkd;m,(eﬂ)lf,m/(s‘),

where 6;, and ¢;, are the polar and azimuthal angles of k in the
laboratory frame, and d’ wm A€ Wigner's d-matrices. In particular,

we note that R;,§ § =5 ,Rﬁu=§-fc, and
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RiYim(®) = (D" RyY, _m($)

I
D™ Y el L (6)Yim 8
m'=—I

1
Z (_1)m/e,m/w.;dfn,m(eﬁ)n_m, )

1
> emedl, (0,)Y (8).
=1

3.4. The Green'’s function

For the later purpose of the plane wave decomposition, we give
complex unit vectors k(v,q) € C3 (v e R, q € R2) by

k(v,q) = (,A;(l:jg)),

where q = |q| and

Vv 1+ (vg)

It turns out that d. (6,
mm

kz(VQ) =
k(v.q)) are functions of vg. We write
mmr[lf(vq)] = mm’ k(v,q))'

These d-matrices are computed using recurrence relations
[21,44,50]. To calculate d"nm,[ir(vq)], we take square roots such
that 0 < arg(v/z) < 7 for all z e C [23,44]. We have

Qg+, forv > 0,

Prevg = { ©q, forv <0,

where @gq is the polar angle of q.
Let us consider the following homogeneous equation.

(8- V+1)i(r,$) = w/ P& §)i(r.§)ds.
S2
Let us consider the Fourier transform of the specific intensity:
1(q,z,8) = / e PI(r,8)dp.
R2

Then the Fourier transform I(q, z, §) satisfies
. = ~ 5k
(no; +iw-q+1)I(q,z,8) = 1—— 1(q.z, %)

=w/ p(8.8)i(q,2,§)ds, (3.1)
SZ

where @ € R? was defined such that § = (w, i). The solutions are
given by

~ ~ _k, ~
I(q.2,8) =e VD Ry | BT(S).

Three-dimensional singular eigenfunctions are obtained as
Ripd" (v, ) = —=P
+Amw)(1 vz)f‘m‘(S(v 35k,

where f = l}(v, q).
The following orthogonality relation holds.

[ 4(Riguq) 7)) (Ri g @2 ) 8
=2r kz WON (V)8 S -

Since the general solution is given by the sum of a particular
solution and a linear combination of eigenmodes, we can write the
Green’s function as [7]

G(r,8;19,50) = Gree (1, §; 70, 50)

1 iq-(p—po)
Tz fR ¢

L MM — 1
m=-LL j=0

+ / /A\m(v)R,}(v o q>'v"(s*)e—’?z<W>Z/“dv} dq,
A ,

where Gyeo (T, §; 19, 8g) is the free-space Green's function and
Am(v;”,q), A™(v,q) are some coefficients which are determined
from the boundary conditions. We note that the free-space Green’s
function or the fundamental solution is obtained as [50]
Giree (T, §iro, §0)
1 ) ~
=— | etP-PIG. (2. § z0.80:9)dq,
(27_[)2 [RZ free( 0,90 ¢I) q

where

. L M™-1 1

Cree (2.8:20.50: @) = [ —
m; ,ZO 2k, (VN (V)

kz(”;nQ)\Z—ZoUv}n

x Rz ;”i (s)d)”‘*(s e

I{(\/m q)

k(iv q) D, (5) DL (So)

1 1
+/o 2k, (VN (V)

we—keDlz—zg|/v dv] ]

Upper signs are chosen for z>zy and lower signs are chosen for z < zy. The
Fourier transform of G(r, §; rg, $p) is defined similarly.

Let us consider the Fourier transform I; of I, which is given by
1 S
L(r 8 =—— qe] $)dq.
S(a ) (27_’:)2\/]1%28 S(quﬂ ) q

We can express I5(q, z, §) in terms of the Green’s function and sin-
gular eigenfunctions as

Emz®=/ /G@izf
/ / Gfree (Z

M7 -1
sz(v Qz/jf!
+ Z |:Z Am(vm)Rk(vm o P ®e
m=-LL j=0

9)S[f1(q.7.§)d§dz

7.8 9S[fl(q.7.§)d§dz

/ A" () Ry, o) DT (S 002 dv], (32)

with some coefficients A’”(v}“,q), A™(v, q). We note that
SIf1=SIf]. where $(q.z.5) = froe PS(r.§)dp and f(q.5) =
2 € P f(p.8)dp.

4. Method of rotated reference frames

The method of rotated reference frames was first proposed by
Markel [22]. Here, we formulate the method making the relation
to Case’s method clear.

In the method of rotated reference frames, we expand the sin-
gular eigenfunction as

N
onE) = Y Q)i (S,

I=|m|
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By multiplying (3.1) by R.Y* (§) and integrating both sides, we

e l my
obtain
[ [ratin @) (1-5F) S o mern s
1=0
N
= zzr/ / P& SH[R Y, B] D G (V) Ry Yim(§) dS'dS.
=0
Hence,
) =5 YO [ 1Yy Oy ($) 8

- wzcm(‘))z Z 21/

=0m'=-I
f / Vi )Y 8V, (8) Yoy (8) S
Therefore,
1 X m ~m hL
5 LRG0 = 5= Gr ),
=0
where

R, = [ 1Y (§)Yn ) .

Let us define vector |y,(m)) and matrix B(m) whose components
and entries are given by

h

(i, (m)) = W Tt

21+ D@2l +1
By (m) = | %RE

The normalization factor Z,(m) is calculated below. Thus we have
[23,44]
B(m) |y, (m)) = v|y,(m)).

The tridiagonal matrix B(m

12 —m2
By (m) = W(Sl’,l—l +

Since the eigenvalues v depend on m, we can write v = v]f". In nu-
merical calculation we introduce Iz (>L, —L < m < L) and write the
matrix B(m) as

0 b\mHl 0
bimi41 0 bimj+2

Bm)y=| 0 by, 0 : (41)

. b,
b, O

where b;(m) = /(12 —m?2)/(hjh;_;). The matrix B(m) has (Iz -

|m| +1)/2 or (Ig — |m|)/2 positive eigenvalues for Iz — |m| + 1 even
or odd, respectively.

We determine the normalization constant Z,(m) from the con-
dition (v, (m)|y¥, (m)) = 1. We have

[ uler®| as
§2

ar).

) is given by

N N
R ID ICACIOMOETE

hi=|m| =|m|

N m?

:11;[ (”>C,'"*1(”)\/4uzi

m M (ll + 1)2 —m?
G OIG, (1) 4<l+1>1]

= Zu (m)

N
x 3 [bi () (Yo M)l = 1) + by 1 (m) (3, (m) |15+ 1)]

Li=|m|

(i (m))
N N
=Z,am) 33 (Y (m)|1)By, (m) (L |9 (m))

lLi=|m| L=|m|
= Z,(m) (y, (m)|B(m)| v, (M))"
= Zy(m)v(y, (m) |, (m)).
On the other hand,

/SZ | @n @[> ds = 22Am (),

Therefore we obtain [50]

2 N™(v)
z,(m) = W),
v
In this way, the three-dimensional singular eigenfunction is
given in the context of MRRF as

o (§) = 2 N (U)Z 2l+1 (U (m))

k(vq) et

X Ri{(v,q) Yim (S)
Since the three-dimensional singular eigenfunctions are ex-
pressed as a superposition of Rk(v s Y, (8) in MRRF, we can ob-

tain [;(q, z, §) in (3.2) without calculating the fundamental solution
Giree (2. 8 20, 50 q).
Let us introduce Iﬁ}) (r.§; q) as [23,44]

Z Yin ()

m=—I

x(=1D"e ”’"‘”"(llllfv(M))d mlit (V)]

u1p+kz(vq)2/vz A+1 Z Yim (=$)

l m=-I

xce~ma (1|, (M))din‘,M[lr(vq)]-

I(+) (1‘ S q) _ elq,o k. (vq)z/v Z 21 +1

1) (r, 8 q) =

Then we have
1 L
0) &) _ (+) (+)
19(r,8) = an)e ME}LEO / Ey (@) (r.8;q) dq,

where F,&:)(q) are determined from the boundary condition and
¥, .0 stands for the sum over all positive eigenvalues of B(M).
From the boundary condition we obtain on I'_,

3 ZZ Z Vi (8) (=1 (141 (M)

M=—Lv>01= =

x dm,M[n(vq>1e*"m’%Fp;t> (@) =f(q.9).

For later purpose we consider

fOr.8 =8(p), P8 =5(psE-2), (4.2)
and write f(q,8) = f9(q,$) (i =1,2), where

21+1
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fVq.% =1,

N

= ~ N I ~

2@ =56-2=3 /2 6. (43)
1=0

where we used Y},,(2) = /(2] +1)/(47)8m0. Correspondingly we
write F(”(q) = Fm)"(q) (i=1,2). By multiplying Y} (§) on both
sides and integrating in SZ, we have

2l +1
Yy S B D)l (vq)]
M=-Lv>0l'=|m|
(+)1(q) /47.[30
F(+)2( ) \/W ”/
Here we defined
B = [ Yin i ) 8
1@ D@ DHI—mIT —m)!
) (I+m)t " +m)!
[RGB di
and used
/ P(pydp = ﬁ By
1, 1=0,
— 0, evenl(#0),
- n
N2 "
S A T T IR
The fact that (- 1)’\/11'"(;,)U satisfies the same equation as F\") im-
plies
DMES), =Fy.

where we note that [22] (I|v_, (M)) = (=) {I|,(M)). We ob-
tain

Yy y

M=0v>0I'=|m|
x [damliT V)] + (1 = 8umo) (=DMdy, ylit (vq)]]

2 e i)

F(+)1 /47'[5
( )2 21/ 1
kS * @]~ 10|

Thus F,é,*u)’(q) (0 <M <N) are obtained from the linear system,
M(q)FGﬁ =y

where the matrix M(q) is defined as

i=1,2,

21+1

M@} imm = Z —B <l va(M))
V=|m|
X[d,';M[ir(vq)]

e 6M0)<71)Md,’,;,,M[ir<vq>1],

and vectors F™! y(i are given by
FON = EL i=1,2,
{U(+)1 }lm = OmoV 4778100,

21’+1

{v(+)2}lm = ‘SmO Z 52/

The matrix M(q) becomes square when L=M, [ = |m| +2a —1,

a=1,..., L(N —|m| +1)/2] (see Remark 5.1 below). That is,
1 B ; ;
1(0)(,.’ §) — / eldp Z Ze—kz(vq)z/ul:lér):(q)
@n)? Je M=——Lv=0 '
21 + 1
Z Z (1Y (M) dpyliT (v)]
=0 m=—1
x(—1)me*”m¢ay,m(§) dq, i=1,2.

Now, we note that the ballistic term (2.3) is calculated as

o _ | fD(p.8)
b9 =7 5)
1 V4 Yoo ($)
= — | ewrez| X 2041

7 . >\ 2 yos)|
Therefore,
I(r,8) = 1© (r §) —Iy(r, §)

qu Z Z )/,En)(q Z)Yl (§)dq
<2”)2 fR i v @2

Here we defined

21+1 .
Vi @.2) = || == (< 1)"e ™ 0 (q. 2)
-V nSlO(SmOeiza
2l+1 R
v 2(q.2) =,/ (~1)me Moy (q, 2)
21+1
_8m0 ? Za
where
L
D@, 2) = Y S R @)e 07 1y, (M)
M=-Lv>0
xdylit(vg)]. i=1.2.

5. Three-dimensional Fy method

By combining the Fy method and the technique of rotated ref-
erence frames, we can establish a numerical scheme for the three-
dimensional radiative transport equation with anisotropic scatter-
ing.

Let us introduce the notation

N L(N=|m])/2]

L= )

m=—
I= \m\+2ﬂ

For § € §2, we expand [; as

(q.0,-8) = > "cim (@)Y ($),
Im
(q.2.-8) =) 'bin(q, 2)Yim(5),
Im
l(q.2.3) =

Z /alm (q’ Z)Ylm (§)
Im

We define éj'." (-L<m<lL)as

j=0,1,...,M™ -1,

j=M", ... NT,—1, (>1)

vm
S]m {j ]M+1)

Cos(zm ,
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where

Nm {N}"’”J +1. (52)

We drop the superscript m if there is no confusion.

Remark 5.1. How to discretize v in the continuous spectrum de-
pends on N, L. We selected S}” in (5.1) because we set N =L in the
numerical calculation below.

Furthermore we introduce
760 = [ (Rie, 0 @2 ® ) Yin @) a8
=/ QL+ Dr (=)™ e™d), it (&gl (&),
where Z" (¢;, q) = 0 for |m’| > . We have
/ M(R d)’“*(s))ls(q 0,8)ds
S2
=L7[f1(-£;.4.0), (5.3)

[ n(Rer®)ia. 0,98
=2k (E;,Q)N™ (E))A™ (£)), (5.4)

/ (R d>'”*(s)>15(q z,8)ds
S2?
=LT[f1(-§,.4.2). (5.5)

[ 1(re0r ®)ia.z5)as
= 2k, (§;)N™ (§)A™ (&) D2/
+LT[f1(5).9.2). (5.6)

where
FNE92 = [ [ (Ricen @)
z 2 ’
x ef'?z@fq)(f*z)/éfs?[ i (q Z.§ ) d§'dz

—Z

%'1 + kZ(E]q) IZ(; m_—l
< I (£, q) / F@.9Y;, (8 ds.

Ly (f1(5.9.2) = /OZ /gz (R!?(E,nq) (D?j/*(g/))

x e kD255 Fl(q. 2, §) d§ dZ
L 1

— (e-kEnzE _ o @
<e ‘ >§]*I<Z(SJQ)IXO:Z

< I (&}, q) / F@.9)Y;,($)ds.

In particular for f®(q,$) (i=1,2) in (4.3), we have

L [F(~&. q.2) — et D5 i (1B
1 e 26+ ED) S
47r B%,

xdém/[lf @JQ)]gm (EJ {

LE"[]F](EJ q,2) = (e—fcz(éﬂ)Z/& - e—2>2(§w;2$q))
i~ ke(&

L
x Y Bidpy lit (€)1 (€))

I=|m’|

4 .
y JLB,OO, i=1,
1, i=2.

By noticing g,*m (v) = (=1)"g"(v), we see that Lg”/[f] and
L’Z“’[f] are independent of ¢4 and independent of the sign of m’.
From (5.3) we obtain

—(=D™ | (R @F*($) )I(q.0,-5) ds
s2 k=8
=L [f1(-4;.9.0).
where we used d>m (s) = (=™ d>'“ (—$). We introduce
(i) —i "% & & P
I _ g-imgy /S 2 M(% o @ (_s))y,m(s) ds
I+1 i k(@ &) Ae
= (=1)H+1eimeq /Sz M<Rk(—§,,q) GDTE,(S))YM(S) ds.
Explicit expressions of Jlfni)jm/ are found as follows [21].

To ™ = k(1) 5 (1" liT ()]

x (Vs 17 - mg, (5,-) VB -mg &)

|€]q|

< B (ng &)
—JI+m + D) +m)gl, (é,-))
P (J(l —m + (- m)g, (&)

—VA+m) (1 +m)g, (Ej))]

(=)jm’
- ‘7lrn ’

where we used gj'(-v) = (—1)’+mg',”(v), and

T = wgl( DRNE 8+$§.[ gn(m)]"
Vet g e [(m] - m
@, 2 OV Gt
Xy [T ()]

/ gm<—~§j,f<z(§jq)u+i§qucos¢)
s &+ k(5@ p +iEqy/1 — u2cos g

x WP ()P ()€ 0% g,

When numerically evaluating the above integral over §, we use the
Gauss-Legendre quadrature for p and trapezoidal rule for ¢. We
note that

jl(i)J —-m' = (-7 (i)jm’. (5.7)
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For each &;, q, we have

ST ¢ (@)e™en = —LT[f1(~£;. 4. 0).

Im

Using (5.7) and the fact that L;™ =L, we have

> /‘71::)]’" Cim ()€™

Im

= Y @
Im

=T e (e

Im

=TI (@) (~1)"e M,
Im

The above relation implies

Cim (q) = CA-lm (q)e—im(pq, é\l,—m (q) = (_1)mélm (Q)
That is,

N
> X
m=0 I=|m|,|m|+2,...
xCm(q@) = LT [f1(~&;, 4. 0).
We obtain from (5.4) and (5.6)

/S 2 M(R,; o *(§))15(q, 2.§)d§

(3577 + (1 = o) (~1m7 |

— k(0275 /S 2 M(R,; @g’*(s*))is(q, 0,8)ds
+17' (165, 9. 2).
Together with (5.5), we have
Z/(_l)m Z;)jm/alm (q. Z)eim¢q

Im

= 3T by (g.20€ ™ + LT [FI(~£7.q.2).
Im

(5.8)

2 DT T a (g, 2)elmen

Im

_ Z/(_l)l+m’+1 J];:)jm,blm(% Z)eim%
Im

= e (1) (Z’(—l)’zin”'“'clm (q)eim(ﬂq)

Im

+15' 1185, 9.2).

where we used Y;,,(—$) = (—1)'Y,,(§). Let us define

" = LT [f1(-§;.4.2),

P e €02/ <Z’<—1)lf,$g>fm’c,m<q>>

Im
+ D)LY (1. q.2).

We can show that v{m/ and v’ém/ are independent of ¢4 and satisfy
v{”m/ = v{m/ and v%”m/ = vém,. Similarly to c;,(q) we have

U (q.2) = 8y (q. 2)e"™%,
a-m(q,2) = (=1)"a1,(q,2),

bin(4.2) = bin(q. 2)e7™1,
b -n(@.2) = (=1)"bin(q.2).

We write
(11) _ (22)
Mjm’,lm - Mjm’,lm

= (DS 4 (1 Bo) (~ 1) g I,

m
12 _ 21
Mjm’.lm - Mjm’,lm
= T " 4+ (1= 8po) ()TN

We obtain

amn (12) ~ -
Mimdim | Miim (a,m(q,z)> B (v{m )
[#3)) @ z T
Mjmﬂlm Mjm’,lm blm(q’ Z) Vz
By setting N=L and choosing O<m’'<L, 0<j<Nm —1,
0<m=<N, l=m+20, O<a<|Y™]| the above matrix M
becomes a square matrix. Otherwise the above linear system can
be solved by singular value decomposition.

In Appendix A, the three-dimensional Fy method for the slab
geometry is explained.

6. Optical tomography with structured illumination

We here explain the set up of our optical tomography. The data
function introduced in Section 6.2 is obtained for spatially modu-
lated incident beams in Section 6.1, and n(r) is reconstructed ac-
cording to the inversion formula (6.9) in Section 6.3.

6.1. Structured illumination

Let us consider structured illumination in the half space, i.e.,
the incoming beam is given by
f(p.8) = F,(p.$)
= Io[1 + Ao cos(go - p + Bo)[6 (S — So).
where g €(0, 1] is the cosine of the polar angle of §y, I is the

amplitude, Ag is the modulation depth, and By is the phase of the
source. Since

2Fy(p.8) — (1 = iv3)F_22/3(p.8) — (1 +iv3)For/3(p. )
3Ap

= fqo (p.9%),
where
fa,(0.8) = 1o P8(§—§). o € (0, 1],

we will use f(p,$) = fq,(p,8) for the boundary condition [48].
Then we have

@9 = [ ewspsdp
= 27)hb(q -~ )5 (S ~ ). (61)

We measure the exitance or hemispheric flux J, defined as follows
on the boundary.

Jop) = [ 1i(p.0.~$)ds.
Moreover we consider the Fourier transform of 7:
i@.2) = [ eon(p.2)dp.

Since the reconstructed 7 is regularized, the reconstructed n is
given by

_ 1 iq-p 7
n(p.2) = W/]Rze X<, (@)71(q.2) dq

:18(p. 2), (6.2)

where Qp is a subdomain in the first Brillouin zone (see
Section 6.2) and xq,(q) is the characteristic function such that
Xa; (@) =1 for e Qp and xq,(q) = 0 otherwise.



132 M. Machida/Journal of Quantitative Spectroscopy & Radiative Transfer 234 (2019) 124-138

6.2. The data function

We refer to D(p) below as the data function.
D(p) =] (p) -]+ (p)
- / 1[I®(p,0,-8) — 1(p, 0, -§)] ds.
SZ

T

Within the first Born approximation, the data function D(p) is
given by

D(p) = / / [/ MG(p,O,—S‘;r’,s”)ds‘]
s2 Jr3 | Js2

x np()© ', §) dr'ds’. (63)

We note that D(p) is obtained through the exitance measured on
the boundary. We can reconstruct ng by solving the linear inverse
problem in (6.3).

Suppose that there are (2N; + 1) x (2N + 1) detectors on grid
points p = (x;,¥;) (i, j = =Ny, ..., Ng) with spacing hy. We consider
the Fourier transform

D(g) =) e *"D(p).
P
Noting the Poisson summation formula

Yo = (2}%)2 > 8(q+p).
p

P

where p denotes reciprocal lattice points (27ifhy, 27jlhy) (i, j € Z).
We note that Qp is in the first Brillouin zone [—m/hy, w/hy] x
[—7 /hg, 7w /hy). If q — qo € 25, we obtain

Bq) = “010/ /Sz [/S uG (7, -5§:0.§ )ds}

x7ip(q — g9, 2)G(Z,§';0,8); q,) d§'dz'.

To compute the right-hand side of (6.4), we recall f1),
(4.2) and introduce

@9 [ [ crarswsoe.§)se)drds.
sz Jr}

(6.4)
f2) in

for i =1, 2 and its Fourier transform
1(q.2,8) = / G(2.5.0.8:qu fV(q.8)ds
s
for i =1,2. We note that f@ are given in (4.3) and I (r,§) sat-

isfies (2.1) with the boundary source f®(p,$) (i = 1,2). Thus we
can write D(q) as

- I o ~ ~
b@) = h%/ f [V*(q.7. ~§)iis(q - qo. 2)
d 0 s?

x [ (qq.2.§)ds'dz . (6.5)
By redefining q as ¢ — qq — q in (6.5), we have
Do) = [ K@z @is@2)dz  qe (6.6)

where

D(qo.q) =D(q + %)%21,

and

K(qo.z:q) = /S [V (q+ qo. 2. -$)[(qy. 2. 5) dS.
We obtain

K(go.z: q) = e”* /SZ (g +q0.2. -8 f?(qo. $) d§

et [ 1@z ]V @+ 0. 98

+ / IV (q+qo. 2. - (qp. 2. §) dS. (6.7)
gz

Thus the quality of reconstruction of 7 in this inverse problem is
determined by the kernel K in (6.6). So far in most research includ-
ing [48], K has been computed within the diffusion approximation.
In the present paper, we will calculate K directly from the radiative
transport equation.

Below, we will numerically compute fs(”,fs(z) using MRRF and
the three-dimensional Fy method.

6.3. Reconstruction by MRRF

We expand I;m and 75(2) with spherical harmonics:

i.;‘(l)(qu/s _§/)
N N
a A
= > Y y0@.2)Wim(-§). §es

m=—N |=|m|

T(”(qo,Z’ s”)

Z Z Y2 (0. 2)Yim (§).

m=—N |=|m|

§ es?
Using MRRF, we obtain

K(go.2 q) = e‘ZZZ( D'y @+ q0.2)8),
=0 I'=

+eiVax Z( D'y (49, 2)BY

1=0
+ Z Z( D'y (@ +q0. 27,2 (0. 2).  (68)
Im 0:2)Yim do- 2), .
m=—N I=|m|
where we used Yj,(—$) = (-1)'Y,,(§) and fsi}’,m(s‘)ds‘z
V47 8,n08%. Hence,
K(qo.z: q)
N N
&L,
1=0 I'=0

x [ﬁ?,é”*(lqﬂol,n —6‘25810}63/

+e” FZ( 1) |:\/m éz)(QO,Z)—eZ\/T]BPO
+ Z( ! [\/m?,é”*(lqwol,z) —ezm510:|

x [\/T%z) (@0.2) —e* 214;1}

N N
21+1A . X
+23 3D V,,SP (g +g0l. 27 (0. 2)

m=1l=m
x €05 (M(Pgq, — (pqu)).

Viewing (6.6) as a linear matrix-vector equation we can express
(6.6) as

ID(q)) = K(@)|7is(q)).
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z=3cm

(I |

0. 1.
6palmax(psa)

z=1cm z=2cm

Fig. 1. Reconstruction by MRRFE. Three panels show the reconstruction of
Spqa(r)/ MaXy 3 (8q(r)) in planes parallel to the x — y plane at depths, from the
left, 1cm, 2cm, and 3 cm. The point absorber is placed at the center of the plane
on the z-axis at the depth 2 cm. The field of view is 5.1 cm x 5.1 cm.

where  (qo|D(@)) =D(q0. ).  (4olK(@)|2) =K(qo.z:q). and
(z|7jg(q)) = 7jg(q,z). We can compute |7jg(q)) with singular
value decomposition. We obtain

715(4.2) = (ZIK* (@)|D(q)).
where K+ is the pseudoinverse such that
R+ = RT(RRT)
reg
Here | denotes the Hermitian conjugate and reg means that the
pesudoinverse is regularized as is explained below. Let ajz (q) and

lvi(q)) be the eigenvalues and eigenvectors of the matrix M(q)
whose q; — q; element is given by

(€M (@)|q0) = /0 K(qo. z: @)K* (q5. z: q) dz.

If we use the truncated SVD and take only singular values greater
than a threshold value o as regularization, 1 is reconstructed as

1 )
) = Gy fQ B elar Z o,-(q)*z%j(vj(q)lqo)

0j>=00

< D(qo, q) Y K* (45, z ) {q5|v;(q)) dq
%

The resulting reconstruction is shown in Fig. 1.
6.4. Reconstruction by the three-dimensional Fy method

We expand fs(l) and 75(2) with spherical harmonics:
V@.7.-%)
YA ZL(N D2 b (g, )Y (8),  § €S2,
>N ZL(N ) a(”(q Wi (—§), §es

I= \m|+

and

[?(g0.2.8)

YhoN z“” D2l @ gy 2 )Y (8),  § es2,
a
S

Yo Z&ﬂ”l 2L g, )i (), § €52

Note that Y, (—§) = (=1)!Y;,,(§). Since §, € S2 and —§ € S2 in
(6.4), the ballistic terms do not contribute to D(q). The kernel in
(6.7) is obtained as

K(qo.z q)
N L(N—|m])/2]

=‘ZZ 2

biV*(q + qo. )Y}, (2)

1= \m|+2a

[N/2]

+e *Vam Z b2 (qo. 2)BY
1 211

N L(N=|m])/2] [(N=|m][)/2]

+ 2
m=-N

[ a'? (qo. 2)b\)* (g + qo. 2)

a=0 o’ =0
I=|m|+2« '=|m|+2a’

+b2) (9. 2)al))" (q + qo. Z)]B,’",,.

Thus the kernel K is obtained using the three-dimensional Fy
method. We can rewrite (6.10) as

V2]
K(qo.z:q) = e Z 21“

lZoz

(6.10)

bV (g +qol.2)

[N/2]
+e*VAr B,%) (qo, 2)BY)
a
N [(N-m)/2] |[(N-m)/2]
+X Y Y [a2@eob) (a+ 4.2

m=0

a=0 o/=0
[=|m|+2a '=|m|+2a’

+52 (g0, 2V (1q + ol z)]

x [5m0 +2(1 = 8mo) cOS (m((ﬂqmo - %a))]Blnf"
where we used (—1)'”Y,f‘_m(s‘) =Y},,(§). The absorption inhomo-
geneity n(r) is obtained from (6.9).

7. Simulation

To show that the numerical schemes developed in
Section 4 and Section 5 are capable of optical tomography,
we perform optical tomography with structured illumination.
We consider a random medium which has the following optical
properties.

s =100cm~!, g =0.9005. (7.1)

For these optical parameters, the transport mean free path is ¢* =
(pe — 4sg)~' = 1 mm, which is typical in biological tissue.

For the formulation in Section 6, the forward data D(qg, q) is
calculated by the diffusion equation, which is an approximation of
the radiative transport equation. In this way, we can avoid inverse
crime. We assume N, point targets at positions rl) = (p{”,z{")
(i=1,...,Ng). Appendix B is devoted to the computation of the
data function D(qg, q).

We place detectors on a square lattice of spacing hy. Detector
positions are specified by

(X,',yj) = (ihd,jhd), i,jZ—Nd,...,Nd.
We set
hy =1mm,

fla=0.05cm™1,

Ny = 25.
Let g0 g) denote the x- and y-components of q. We put W =
[Z(Nd + Ns) + 1]hd, and

2

wa _ 27, 2
q w b

mG - 2
q W I
For qg we use

Wi _ 2T G 2T
q5 :Wl’ q5 =—j, 1,j=—Ns...,N;.
We set
Ns = 10.

Note that qf)")("“) —qg‘)(i) ~0.1mm~!. In this demonstration we
chose L=N=9, Iy =1, and §, = Z. Reconstruction is done by the
formula (6.9). In both cases of MRRF and the three-dimensional Fy
method, about 10 singular values were used for the truncated SVD.
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z=2cm z=3cm

z=1cm
(I
0.

Fig. 2. Reconstruction by the three-dimensional Fy method. Three panels show the
reconstruction of §uq(r)/ MaX,cqs (84q(r)) in planes parallel to the x — y plane at
depths, from the left, 1cm, 2 cm, and 3 cm. The point absorber is placed at the cen-
ter of the plane on the z-axis at the depth 2 cm. The field of view is 5.1cm x 5.1 cm.

O |

1.

Spialmax(pa)

z=5mm z=10mm z=15mm z=20mm

0 1

Fig. 3. Reconstruction by MRRFE. Four panels show the reconstruction of
Sua(r)/maxrem (814q(r)) in planes parallel to the x — y plane at depths, from
the left, 5mm, 10mm, 15mm, and 20mm. The point absorbers are placed
at (10mm, 10 mm, 10 mm) and (-10mm, —10 mm, 15mm). The field of view is
51cm x 5.1cm..

Sptalmax(pa)

7.1. A point absorber

First we put Ny = 1. Let us assume that a point absorber is em-
bedded at x,(,l) =y£1) =0, zé” =20mm.

Fig. 1 shows the reconstruction by MRRF. In Fig. 1,
Sua(r)/ MaX,. 3 (8uq(r)) is plotted in planes parallel to the
x — y plane at different depths z. In the middle panel for z= 2 cm,
the absorber placed 2 cm away from the surface is reconstructed
while the reconstructed n~0 in the left panel for z=1cm and
the right panel for z =3 cm.

Fig. 2 shows the reconstruction by the three-dimensional Fy
method. The results are almost identical, and the target is success-
fully reconstructed.

7.2. Two point absorbers

Next we consider two absorbers (N;=2): One at
rg” = (10mm, 10mm, 10mm) and the other at rg,z) =
(=10mm, —10mm, 15mm). Reconstructed images are shown
in Figs. 3 and 4 for MRRF and the three-dimensional Fy method,
respectively. Tomographic images show that reconstruction of
multiple targets is more difficult than that of a single target. In
Fig. 3 for MRREF, the target at rf,z) is almost invisible whereas the
target at rf,” is almost invisible in Fig. 4 for the three-dimensional
Fy method.

To investigate the robustness of reconstruction, we added 3%
Gaussian noise to the data function D(qg, q). The results are shown
in Figs. 5 and 6.

8. Concluding remarks

Since the aim of this paper is to present novel numerical al-
gorithms of the radiative transport equation for optical tomogra-
phy in spatial-frequency domain, we mainly focused on how to

z=5mm z=10mm z=15mm z=20mm
(I |
0. 1.
6pa/max(Spa)

Fig. 4. Reconstruction by the three-dimensional Fy method. Four panels show the
reconstruction of §u4q(r)/ max,zs (8/4q(r)) in planes parallel to the x — y plane
at depths, from the left, 5mm, 10mm, 15mm, and 20 mm. The point absorbers
are placed at (10 mm, 10 mm, 10 mm) and (-10mm, —10mm, 15 mm). The field of
view is 5.1cm x 5.1cm. .

z=5mm z=10mm z=15mm z=20mm
(I |
0. 1.
Spalmax(6pa)

Fig. 5. Same as Fig. 3 but 3% Gaussian noise is added.

z=15mm z=20mm

-09 K

Fig. 6. Same as Fig. 4 but 3% Gaussian noise is added.

z=5mm z=10mm

compute [ @ in (6.5) and reconstructions are done for sim-
ple point targets. Reconstructions of targets of more complicated
shapes will be necessary in the future study. In particular, it is a
future problem to show the superiority of the transport-based op-
tical tomography over the diffusion-based optical tomography in
spatial-frequency domain. Since structured illumination is quite of-
ten considered in shallow regions where the diffusion approxima-
tion breaks [49], the radiative transport equation is expected to be
important for structured illumination.

It is straightforward to extend the three-dimensional Fy method
for the half-space to the slab as is described in Appendix A. In [44],
MRRF was formulated in a slab. Thus our optical tomography can
be similarly formulated in the slab geometry.

Although the first Born approximation is employed in this paper
(see (2.2)), recently optical tomography with higher-order nonlin-
ear terms has been developed by the use of a recursion algorithm
for the inverse Born series of the radiative transport equation
[58]. The present schemes for calculating the kernel K with MRRF
and the three-dimensional Fy method can readily be extended to
such nonlinear inverse problems, which is an interesting future
problem.
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Appendix A. The Fy method in the slab geometry

We consider a slab of width zgax. The radiative transport equa-
tion is given by
§-VI(r,$) +1(r,§) =w [, p§.$)I(r.§)ds,
(r,$) eR3 x 2,
I(r.8) = fi(p.§), z=0, peR?
I(rsg):fz(psg)’ Z:ZmaXv pGRZ,

with some boundary values f;(p,$), f,(p, §). The specific intensity
is given by

. 1 ap o
I(r,$) = e fRze‘“’ >

m=-—L

“ (A1)
sgSi,
§es?,

M1
|: > AT

A —k,(um m
X Rk(u’" q) P (e Cror]

Mm™—1

k (um m
2 :Am( Um)Rk( o d)m $)e wig)z/vi
j=0

/ A" (1) Ry, g DI T dv},

with some coefficients Am(iv}“), A™(v). Using the orthogonality
relations we have

/Sz (Rg @ *(s))I(p 0,$)ds

=2k, (EQN (—E)A™(=&), (A2)
[ (Rg @7 8))1p. 2 )

= 27k, (EQIN (—§)A™ (— ek EDamar/E (A3)
[ (R @ @)icp.0.9) s

=2k (EQIN (E)A™(£), (A4)
[ 1 (Re @2 $))1(p. 2 )

= 27k, (EQIN (§)A™ (& )e ke EDamac/5 (A5)
/S (R @ (9)I(p,2,8) dS

= 2k, (EQIN (—)A™ (—§ ek EDZ/% (A6)
[ (R @ ®)ip.2.8)as

= 2k (EQIN (§)A™ (8 e R:ED2/% (A7)

We express 1(q, z, §) (§ € S?) as

- N L(N=Im])/2]
I(qr 07 7§) = Z Z Clm(q)ylm(g)s
m=-N 1=|z1:\32u

N L(N=|m])/2]

1~(¢I, Zmax, §) = Z Z dim (@)Yim (8).
-N 1= |m\+2n
i N LO-ImD2)
I(qv z, _§) Z Z blm (q7 Z)Ylm (§)’
—-N

1=| |m\+2a

N L(N=|m[)/2]

Z im (q, Z)Ylm (§),

a=0
I=|m|+2a

i(q.z,8) =
m=-N

where § Si. From (A.2) and (A.3) we obtain
_(—1ym /S 1(Ry D ($))I(q,0, —§) d§

+ /S w(Ry @™ (§)) Fi (q.8) d8

— e*r(z (EQ)zmax /& /
&
_(_‘l)me—’}z(%—q}zmax/%— / o)
8

where we used <I>'fé 8 = (—1)”‘<I>g”(—s‘). Similarly from (A.4) and
(A.5) we obtain

/ (R @ ($))1(. Zmax. §) dS
S2

+

—(=D" | (R @™ (8)) f(q. ) d§
§2

Ry @7 (5))(q, Zmax, §) d§

R 7 (9) f>(q.9) ds,

_ ok EDzma “(8))fi(q.8)ds
_ ofuléar /é/SZM(R,ﬁg“ $))f1(q.8) ds

x

— _1 me_kz(éq)zmax/é
(=1 Sz
They are rewritten as

ZBITnf (E)Cpy + e K EDZman/E ZA%,(_g)dlm,

R @":(8))I(q, 0, -3) ds.

Im’ Im’
=E], (A.8)
o ke (D zman /5 ZA%/(_é)Clm’ + ZBZ'" (&)dy
Im’ Im’
=E, (A.9)
where

A (8) = [ (R @5 )i 5 05,
B () = (1 [ 1 (Rg O (8)) i ()

B = [ 1(Re 07 ) fiq.8)ds

T

(o) Dzma g /gz (R @7 () f2(q.8) ds,

i

B = [, (R @7 ) Fo(.8)ds

T

+ (_1)me—f<z<éq>zmax/$ / M(R;} @gw (§))f1 (q.9)ds.
s2

We obtain by using (A.2) and (A.6)
f (R, @ (8))I(q.0,8) d§

52

= e*kz(éq)Z/E/
from (A.5) and (A.7)
[ 1(Re @ ©)7(@. 20,988

— o k(D) Gnax—2)/E / W (Ry O ())T(q.2.§) ds,
s2

R; @72 (8))1(q, 2, 8) ds,
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by using (A.3) and (A.6)

/ M(R,; <I>T§ (§))f(q, z,§)ds = o~k (§0) (zmn—2)/§
&2 )

x /S (R ©" ()G, Zmax, $) 05, (A10)
and from (A.4) and (A.7)
/S (R @ (9))T(g.2, ) ds

_ ekt /S (R @ ($))T(g, 0,8 ds. (A11)

We obtain ¢, dj;,; from the linear system (A.8), (A.9). Then ay,
by, are computed using (A.10), (A.11). We note that (A.10) corre-
sponds to (5.5) and (A.11) corresponds to (5.8).

Appendix B. Forward problem

We assume point absorbers given by

Na
n(r) =naVey 8(r—rd),

i=1
where V, corresponds to the volume of each absorber and 7, is
a positive constant. We will calculate the data function using dif-
fusion approximation. As is mentioned in (1.1), the unit of length
is ¢ = 1/u¢. With diffusion approximation we can express the
Green’s function as [59]

LS
G(r.5:r.§) ~ —CZ;TE (1408 V)(1 -8 - V)GPO . 1),
where p; =@ (1 -g) and ¢* =1/(1 — wg). Here,
{—DOVZG(DE) > r)+aeGCPO (@ r)=6(r—-1), z>0,

G—-tz-VG=0, z=0,
where
cl* _
Dy = 3 Qo = Clq,

with c the speed of light in the medium. We choose the extrapo-
lation distance (0 <¢ <o) as
= %Z*.

3
In the Fourier space we can introduce GPF) (z, 7; q) = G(PP) (z, Z; q)
as

GO (r.1') = (Z]T)2 /Rz et (e-PIGP8 (2,7 ) dg
1 0 2 Ya !
= E/ do(alp— p'HEPP (2.2 9) dg, (B.1)
0

where ], is the Bessel function of the first kind of order 0. We
further approximate the Green’s function as

! px
Cz.87.8:q) ~ C’Z;f (1—ies.q)(1—ie’§ - q)
xGP® (2,7 q).
We have [60]
~ 1
CP®(z,7;q) = 5=—~
229 = 35,0(9)
@z 1—=Q@¢ :
e~ UDIz=7| _ e~ QUDIz+7| ,
X[ 1+Q(g)¢

where

Q(q) = Vk3 + ¢2,

37
ko= [0 = 2R 3A— )1 - wg).

Dy £*
We have ko ~ 0.12mm~" for optical parameters in (7.1). In partic-
ular,

¢ e Q@2
Do(1+Q(q)0) ’

The integral in (B.1) can be numerically evaluated by the double-
exponential formula [61]. Let 0 <j; <j, < --- be zeros of J,. We de-
fine

F(q) = GP®(z,7; q)q.

GP®(z,0;q) = z>0.

Then we have

1 o X
) = ot | ]O(X)F<Ip—p/l) *
N
1 d , do/dyly_pj, /=
P R — E — F — Pk
ﬂlp—p’|k=1]°(q"|p #DF @) JeU1 ()2

where h>0 is a small number, N, is an integer, ¢(y)=
ytanh(Z sinhy), and

b4 h .
ax = h|pp’|¢(n]k)'

Using the radiative transport equation, the energy density
u©(r) is obtained as

uO @y = L / 10 (r. §) d§.
C S2

Its Fourier transform has the form

a<°>(q,z)=1/// G287, 8
C Js2 Js2 Jo
x f(q,8)8(z)dz d§ ds,

where we used §y = Z and (6.1). By the diffusion approximation we
have

1©(q.2) ~ 2m)?lop0*5(q — qo)GP (2, 0; qp).

The Fourier transform of the following u(® is given by the right-
hand side of the above equation.

u“”(r):/ GO® (r, ¥)S(') dr,
R}

with the source term
S(r) = Ipulee®r§(z).

In the diffusion approximation, u(r)= (1/c) [ I(r,$)dS, where
I(r, §) is the solution to (1.2), satisfies

{—DOVZu(r) + (g + cn(P)u(r) = S(r),
u—+¢z-Vu=0,

z>0,
z=0.

We have

u(r) = /R3 GPR(r, r)[S() — cn@)u()] dr’

u@@)—c f GO® (r, ¥y n@)u@’) dr’
R

Nu . .
=uO )~y ) GO (rrury),
i=1

(B.2)

where

Yo = NdVa.



M. Machida/Journal of Quantitative Spectroscopy & Radiative Transfer 234 (2019) 124-138 137

Let us set
N« = 0.0015,
We note that ((1/V;) fva Ma(r)dr)/fiqs ~ 4 for each absorber. When

r= rgi)

Vo= 10" mm> 12,

, we can write (B.2) as
Na . -
> Miju(rg”) =u® ),
j=1
where
Mjj = 8ij + oGP () 1),
Thus we have
Na - -
u) =u® @) — 3 60 @) Tu® @),
ij=1
where T;j = J/oMif- If N; = 1, we have
u(r) =u@ @) — 60 i rHu® 1),

where we write [62]

Yo
Vr=Tn= .
' 1+ 70600 (1D, r(D)
Let us consider GPE)(ry, ry), where ro =r{) (i=1,...,Ny). Intro-

ducing the ultraviolet cutoff A. (kgAc< 1), we define the Green’s
function GPE)(ry, 1y) as [62]

DE 1 2w /A q
G )(ru,ra)=74nDo /0 @ dq

¥4 Q@1 9y
b Q@ Q@e+1’ 1
e—ZkUza

1 2w
- 41 Dy |:Q<[\c) —ko+ 224

2 1
- Ee”““E] (22a(ko + K))]

where E; is the exponential integral defined by

oo e—t
Ey(z) = / ¢ ar
Z t
In the numerical calculation we set
Ac =V}

The hemispheric flux is obtained as

-1 2 0 R
1% 0) = = [ [ nfeutp.0) - 3068 Vutp.0)]dudy
7T Jo -1

_ c/1 DO _ c
_ i(j + a)u(p, 0) = 5u(p.0).

We then have
JPPO () — PP (p)
Cc
= 5 (u®(p.0) ~u(p,0))
Na
Cc i j
=5 2. G (p. 0.1 Tju @ ().
i,j=1

The data function is thus calculated as

h? ;
Do, @) = 72 e P[P0 (p) - [P ()]
P

Nq
clpl* _ig0® _ig-(o®— ol
- T~ 40! p=ito- (00"
it 5,

ij=1
x GOP(0,2: 1q + 4o 6P 5. 0: qo).
When Ng = 1, we have

D( ) = lSnnaVaM;gZ _ian, e~Q@0)z
0" amenen” T QG0
e—Q(a+g0))za
X T AT AN’
14+Q(lg+qol)¢

where
2 K e—2koza
CO = Q(E) — Ko + Tza

2 1
- zezZﬂ”El (2za (ko + Z)>'
We note that ¢y ~ Q(E) — ko for large zq.
Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jqsrt.2019.06.009.
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