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We consider the polarization of thermal emission in the near field of various materials, including dielectrics and
metallic systems with resonant surface modes. We find that, at thermal equilibrium, the degree of polarization
exhibits spatial oscillations with a period of approximately half the optical wavelength, independent of material
composition. This result contrasts with that of Setala et al. [Phys. Rev. Lett. 88, 123902 (2002)], who find mon-
otonic decay of the degree of polarization for systems in local thermal equilibrium. © 2016 Optical Society of

America
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1. INTRODUCTION

Coherence theory is one of the cornerstones of optical physics
[1]. Its goal is to describe the statistical regularities of electro-
magnetic fields in terms of field correlations and their relation
to measurable quantities. Implicit in the formulation of coher-
ence theory is the notion of a statistical ensemble of random
fields. However, the origin of the randomness of the fields is
not explicitly part of the theory. As a result, the theory of co-
herence is primarily concerned with the propagation of corre-
lation functions, which has the powerful consequence that its
predictions are, in some sense, independent of the underlying
probability distribution of the fields.

A notable exception to the above remarks is provided by the
theory of thermal emission of radiation [1,2]. In this context,
the currents, which act as sources of the optical field, are taken
to obey the fluctuation-dissipation theorem. Thus, it is possible
to calculate the correlation function of the field in terms of
the statistics of the current. It follows that the emitted field dis-
plays temporal and spatial coherence [3]. Moreover, the near-
and far-field coherence functions manifest strikingly different
behavior [4–8]. In particular, in materials that support resonant
surface waves, the spectrum of emitted radiation changes quali-
tatively on propagation, ranging from extreme narrowing at
subwavelength scales to broadband in the far field. Likewise,
the spatial coherence of emitted light is dramatically modified
in the near field, with a coherence length that is much smaller
than the λ∕2 far-field limit of blackbody radiation. In either
case, the alteration in coherence is due to the decay of evan-
escent modes of the field on propagation.

The near-field polarization of thermal emission has also
received attention [9,10]. It was found that, at local thermo-
dynamic equilibrium, the emitted field becomes depolarized,
with the degree of polarization decaying monotonically upon
propagation into the far zone. By the term local, we mean that
the medium is held at a nonzero temperature and radiates into
vacuum at zero temperature. In this case, pure thermal emis-
sion occurs, with a net heat flux transferred from the material
to vacuum. In contrast, we study the corresponding problem
for systems in thermal equilibrium, where the net flux van-
ishes. Instead of monotonic decay, we predict that the degree
of polarization exhibits spatial oscillations with a period of
approximately λ∕2. We illustrate this result for several mate-
rials, including lossless dielectrics and metallic systems with
resonant surface plasmon modes. We note that the presence
of polarization oscillations was observed numerically by
Dorofeyev and Vinogradov [11]. However, these authors
did not provide a mathematical analysis of the phenomenon
nor did they predict the universal oscillatory behavior of the
polarization.

The remainder of this paper is organized as follows. In
Section 2, we recall some basic facts from coherence theory.
We also obtain the expression for the degree of polarization in
the half-space geometry at thermal equilibrium. In Section 3,
we calculate the polarization for several materials, elucidate the
presence of oscillations and provide an analysis of the distance-
dependence of the degree of polarization. Our conclusions are
presented in Section 4, and Appendix A presents details of the
mathematical analysis.
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2. COHERENCE AND POLARIZATION

The fundamental quantity of coherence theory in the space-
frequency domain is the cross-spectral density W ij, which is
defined by

W ij�r; r 0;ω�δ�ω − ω 0� � hEi�r;ω�E�
j �r 0;ω 0�i: (1)

Here, E�r;ω� is the electric field at the position r and fre-
quency ω, the presence of the delta function indicates that the
field is taken to be statistically stationary and h� � �i denotes the
ensemble average. We note that W ij�r; r 0;ω� for r ≠ r 0 is a
measure of the spatial coherence of the electric field. The degree
of coherence is defined to be [12,13]

μ2�r; r 0;ω� � Tr�W �r; r 0;ω�W �r 0; r;ω��
TrW �r; r;ω�TrW �r 0; r 0;ω� : (2)

It can be seen that 0 ≤ μ ≤ 1. The case μ � 0 corresponds
to an incoherent field and μ � 1 to a coherent field; otherwise,
the field is said to be partially coherent.

There is a fundamental link between polarization and coher-
ence. If we consider W ij�r; r 0;ω� for r � r 0, then W is a mea-
sure of the polarization of the field. The degree of polarization
P is defined as [9,10,14,15]

P2�r;ω� � 3

2

�
Tr�W 2�r; r;ω��
Tr2�W �r; r;ω�� −

1

3

�
: (3)

It can be shown that and 0 ≤ P ≤ 1. When P � 0 the field
is said to be unpolarized, and if P � 1 the field is polarized;
otherwise, the field is partially polarized.

We consider a system consisting of two homogeneous half-
spaces, which are in thermal equilibrium at a temperature T .
The lower half-space z < 0 is taken to consist of a nonmagnetic
lossy material with a generally complex dielectric permittivity
ϵ1�ω�. The upper half-space z > 0 consists of a nonmagnetic
material with a real and frequency-independent permittivity ϵ2.
In this setting, the fluctuation-dissipation theorem can be used
to relate the cross-spectral density to the Green’s tensor Gij by
the formula

W ij�r; r 0;ω� � 2πk20ℏ coth

�
ℏω
2kBT

�
ImGij�r; r 0�; (4)

where k0 � 2π∕λ is the free-space wavenumber and kB is
Boltzmann’s constant [16].

The Green’s tensor obeys the equation

∇ × ∇ × G�r; r 0� − k20ϵ�z�G�r; r 0� � 4πδ�r − r 0�I ; (5)

where

ϵ�z� �
�
ϵ1 if z < 0;
ϵ2 if z > 0;

(6)

and I is the unit tensor. The Green’s tensor also obeys the
boundary conditions

ẑ × G�r; r 0�jz�0	 � ẑ × G�r; r 0�jz�0− ; (7)

ẑ × ∇ × G�r; r 0�jz�0	 � ẑ × ∇ × G�r; r 0�jz�0− ; (8)

which correspond to the continuity of the tangential electric
and magnetic fields, where G is interpreted as the electric field
radiated by a point source.

It will prove useful to expand the Green’s tensor into plane
waves [17]:

Gij�r; r 0� �
Z

d2q
�2π�2 e

iq·�ρ−ρ 0�gij�z; z 0; q�; (9)

where

gij�z; z 0; q� �
2πi
k2z

��rs ŝi ŝj 	 rpp̂	i p̂−j�eik2z �z	z 0�

	 �ŝi ŝj 	 p̂	i p̂	j�eik2z �z−z
0��: (10)

Here,

ŝ � q̂ × ẑ; k
 � q
 k2z ẑ; p̂
 � ŝ × k̂
; (11)

where k2z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k20 − q

2
p

. The Fresnel reflection coefficients
are given by

rs �
k2z − k1z
k2z 	 k1z

; rp �
k2zϵ1 − k1z
k2zϵ1 	 k1z

; (12)

where k1z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1k20 − q

2
p

.

3. APPLICATIONS

We now describe applications of the above results to various
materials. In the cases considered, the system has the temper-
ature T � 300 K and the upper half-space is taken to have
permittivity ϵ2 � 1. The optical properties of the materials that
comprise the lower half-space are given in Table 1 [18]. In
Fig. 1, we plot the degree of polarization P as a function of
the distance z from the interface for several materials including
glass, tungsten, silver, and silicon carbide (SiC). We see that the
field is partially polarized near the interface and becomes depo-
larized at large distances. In Fig. 2, we plot the corresponding
degree of coherence μ as a function of the transverse distance
ρ � jr − r 0j, for points r and r 0 in the plane z � z0. As may be
expected, the field is partially coherent near the interface and
becomes incoherent with propagation, consistent with the
results of [4].

Evidently, the behavior of both P and μ depends sensitively
on the dielectric permittivity of the material under investiga-
tion. In the case of glass, which is a nonlossy dielectric at
the wavelength λ � 500 nm, the field is relatively less polar-
ized. In contrast, silver exhibits a surface plasmon resonance
at λ � 620 nm, and the near-field is strongly polarized.
This should be compared with the case of tungsten, which does
not exhibit a plasmon resonance at λ � 500 nm, where it can
be seen that P is correspondingly reduced. Finally, we consider
the case of SiC, which, at λ � 11.36 μm, supports surface-
phonon polariton modes. We see that, as in the example of
silver, the near-field is strongly polarized.

Table 1. Optical Properties of Considered Materials

Material λ ϵ

Glass 500 nm 2.25
W 500 nm 4.35	 18.1i
Ag 620 nm −15.0	 1.0i
SiC 11.36 μm −12.2	 0.71i
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A striking feature of Fig. 1 is the oscillatory nature of the
distance-dependence of the degree of polarization. A straight-
forward asymptotic analysis of the integral Eq. (9) defining
ImGij shows that for z ≫ λ, the envelope of the oscillation
decays as P ∼ 1∕z. Moreover, if Re�ϵ1� ≪ −1, it can be seen
that

P ∼
1

2

���� sin�4πz∕λ	 2∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
�

4πz∕λ	 2∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
����: (13)

Thus, the period of the oscillations is asymptotically λ∕2,
independent of the material. In Fig. 3, we compare the above
asymptotic formula with the exact result obtained from Eq. (3).
As may be expected, there is excellent agreement for SiC and
relatively poor agreement for glass.

It is important to note that polarization oscillations are not
present for systems in local thermal equilibrium, where P de-
cays monotonically after reaching a maximum at z ≲ λ. [9].
This difference can be explained by the interference between
modes in the upper half-space, a mechanism that is not present
in the calculations presented in [9].

4. DISCUSSION

We have investigated the polarization of near-field thermal
emission. We find that, at thermal equilibrium, the degree
of polarization exhibits spatial oscillations with a period of
approximately λ∕2, independent of material composition.
The amplitude of the oscillations is greatest in systems with
resonant surface waves such as surface-plasmons or surface-
phonon polaritons.

In future work, we intend to explore the analogy between
spatial correlations of near-field thermal radiation and near-
field speckle patterns produced by volume scattering. It can be
expected that thermal emission would correspond to a speckle
pattern produced in transmission through a scattering medium,
while thermal equilibrium would correspond to a speckle pat-
tern produced by balanced illumination in reflection and trans-
mission. Thus, the results presented herein could be relevant to
the study of polarization in speckle patterns.

APPENDIX A

Here, we derive the asymptotic form of the degree of polariza-
tion given in Eq. (13). We assume that the real part of ϵ1 is
negative. We also assume that ϵ1 has a small imaginary part;
its real part is a large negative value, and the height z above
the interface is much larger than the wavelength λ. That is,
we suppose the following relations hold:

jIm�ϵ1�j ≪ jRe�ϵ1�j; (A1)

Fig. 1. Degree of polarization of glass, SiC, silver, and tungsten as a
function of distance z from the interface.

Fig. 2. Degree of coherence of glass and SiC as a function of trans-
verse distance ρ in the plane z � z0 at various distances z0 above the
interface.

Fig. 3. Comparison of the asymptotic formula [Eq. (13)] with the
exact result [Eq. (3)] for the degree of polarization.
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1 ≪
4πz
λ

≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
: (A2)

The assumption Eq. (A2) implies that

ζ ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
; (A3)

where

ζ � 4π

�
z
λ
	 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
�
: (A4)

Using Eq. (A1) we have

k1z ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20jRe�ϵ1�j 	 q2

q
: (A5)

Let us introduce

t �

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

	
q
k0



2

r
; 0 < q < k0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	

q
k0



2
− 1

r
; q > k0:

(A6)

Noting that jRe�ϵ1�j ≫ 1, we can express k1z as

k1z ∼ ik0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
8><
>:

h
1	 1−t2

2jRe�ϵ1�j
i
; 0 < q < k0;h

1	 1	t2
2jRe�ϵ1�j

i
; q > k0:

(A7)

Therefore, we obtain for 0 < q < k0

rs ∼ −1 −
2itffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRe�ϵ1�j
p ; (A8)

rp ∼
jRe�ϵ1�j

1	 jRe�ϵ1�jt2
�
t2 	 2itffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRe�ϵ1�j
p −

1

jRe�ϵ1�j

�
; (A9)

and for q > k0
Im�rs� ∼ 0; Im�rp� ∼ 0: (A10)

Thus, we obtain

W 11 � W 22 (A11)

∼2πk20

�
k0ℏ

eℏω∕kBT − 1
	 k0ℏ

2

�

×
Z

1

0

�
1	 t2 	

�
− 2	 1

1	 jRe�ϵ1�jt2
�
cos�ζt�

	 t2
�
− 1	 2	 jRe�ϵ1�j

1	 jRe�ϵ1�jt2
�
cos

�
4πz
λ

t
��

dt; (A12)

W 33 ∼ 4πk20

�
k0ℏ

eℏω∕kBT − 1
	 k0ℏ

2

�

×
Z

1

0

�1 − t2�
�
1	 jRe�ϵ1�j

1	 jRe�ϵ1�jt2
cos�ζt�

	
�
1 −

2	 jRe�ϵ1�j
1	 jRe�ϵ1�jt2

�
cos

�
4πz
λ

t
��

dt: (A13)

Taking Eq. (A3) into account, we can evaluate the integrals for
W 11 and W 22 as follows:

Z
1

0

�
−2	 1

1	 jRe�ϵ1�jt2
�
cos�ζt�dt ∼ −

2

ζ
sin ζ

	 π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p ; (A14)

Z
1

0

t2
�
−1	 2	 a

1	 at2

�
cos�ζ0t�dt

∼ −2

�
4πz
λ

�
−2

cos

�
4πz
λ

�
	2

�
4πz
λ

�
−3

sin

�
4πz
λ

�

−
π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p : (A15)

Similarly, for W 33, we have
Z

1

0

jRe�ϵ1�j�1 − t2�
1	 jRe�ϵ1�jt2

cos�ζt�dt ∼ −
1

ζ
sin ζ 	 π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
2

;

(A16)

andZ
1

0

�1 − t2�
�
1 −

2	 jRe�ϵ1�j
1	 jRe�ϵ1�jt2

�
cos

�
4πz
λ

t
�
dt

∼ −2

�
4πz
λ

�
−2

cos

�
4πz
λ

�

	
�
2	

�
4πz
λ

�
2
��

4πz
λ

�
−3

sin

�
4πz
λ

�
−
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRe�ϵ1�j

p
2

:

(A17)

Using Eqs. (A2) and (A3), we arrive at

W 11 � W 22 (A18)

∼ 2πk20

�
k0ℏ

eℏω∕kBT − 1
	 k0ℏ

2

�

×
�
4

3
−
2

ζ
sin ζ − 2

�
4πz
λ

�
−2

cos

�
4πz
λ

��
; (A19)

W 33 ∼ 4πk20

�
k0ℏ

eℏω∕kBT − 1
	 k0ℏ

2

�

×
�
2

3
− 2

�
4πz
λ

�
−2

cos

�
4πz
λ

��
: (A20)

Finally, we obtain

P ∼
1

2

���� sin ζ

ζ

����; (A21)

which is equivalent to Eq. (13). Evidently, this formula implies
that the origin of polarization oscillations is due to the interplay
of the numerator and denominator of 3.
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