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1. INTRODUCTION
We consider light propagating in random media, such as fog,
cloud, and biological tissue. Then the specific intensity of light
obeys the radiative transport equation. Although different
numerical methods have been developed [1–3], the analytical
approach is preferable particularly for the sake of medical
imaging and optical tomography [4,5].

Case’s method is a method of obtaining solutions to the
equation as superpositions of elementary solutions [6].
Although the method gives insight into the theoretical struc-
ture of the specific intensity, it works only when the specific
intensity carries one spatial variable and is independent of two
spatial variables in three-dimensional space. While the exten-
sion of Case’s method to anisotropic scattering was soon done
[7,8], there has been no real success in extending the method
to three dimensions despite considerable efforts [9–15]. In
particular, Kaper proposed elementary solutions of the form
of a plane wave and developed a singular eigenfunction theory
by reducing the problem to a one-dimensional equation by
changing angular variables to a new complex variable [10].
However, this singular eigenfunction is complicated (for
example, the dispersion function Λ is given by a three-
dimensional integral) [13]. Even for an infinite medium
with isotropic scattering, calculation is quite complicated.
Duderstadt and Martin wrote, “Although there have been
many attempts to extend these methods (the integral trans-
form and singular eigenfunction methods) to two- and three-
dimensional problems, these extensions have usually
encountered extreme mathematical complexity and have
met with only marginal success” ([2], p. 122).

In this paper, we extend Case’s method to a general case
where the specific intensity depends on three spatial variables
in addition to two angular variables. We evaluate the singular
eigenfunction in each elementary solution with the reference
frame whose z axis is taken in the direction of the wave vec-
tor. That is, the reference frame is rotated depending on the
transverse buckling constants. This point is the key difference

from Kaper’s singular eigenfunctions. Indeed, the idea of ro-
tated reference frames was first used by Markel [16]; the an-
gular part of elementary solutions was expanded by rotated
spherical harmonics.

The remainder of the paper is organized as follows. In
Section 2, we introduce the radiative transport equation. In
Section 3, we develop singular eigenfunctions and obtain
elementary solutions. In Section 4, we consider eigenvalues.
We see the relation to the method of rotated reference frames
in Section 5. In Section 6, we obtain the three-dimensional
Green’s function in an infinite medium. Then the energy den-
sity is calculated as a numerical example in Section 7. Finally,
we give summary in Section 8. Polar and azimuthal angles in
rotated reference frames are presented in Appendix A. The
expansion coefficients in the method of rotated reference
frames are calculated in Appendix B.

2. RADIATIVE TRANSPORT EQUATION
Let I�r; ŝ� be the specific intensity at position r ∈ R3 in
direction ŝ ∈ S2. We consider the time-independent radiative
transport equation, which is given by

ŝ ·∇I�r; ŝ� � �μa � μs�I�r; ŝ� � μs

Z
S2
f �ŝ · ŝ0�I�r; ŝ0�dŝ0

� S�r; ŝ�; (1)

where μa and μs are the absorption and scattering coefficients,
respectively, and S�r; ŝ� is the source term. We suppose μa and
μs are positive constants, and the scattering phase function
f �ŝ · ŝ0� can be modeled by a polynomial of spherical harmon-
ics of degree N :

f �ŝ · ŝ0� �
XN
l�0

Xl

m�−l

f lY lm�ŝ�Y�
lm�ŝ0�: (2)

We choose f l so that f is normalized as
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Z
S2
f �ŝ · ŝ0�dŝ0 � 1: (3)

We have N � 0, f 0 � 1 in the case of isotropic scattering, and
have N � 1, f 0 � 1, f 1 �

R
S2 �ŝ · ŝ0�f �ŝ · ŝ0�dŝ0 in the case of lin-

ear scattering. For the Henyey–Greenstein model [17], we
have N � ∞, f l � f l1. By dividing both sides of Eq. (1) by
μt � μa � μs, we obtain

ŝ ·∇~rI�~r∕μt; ŝ� � I�~r∕μt; ŝ� � c
Z
S2
f �ŝ · ŝ0�I�~r∕μt; ŝ0�dŝ0

� 1
μt
S�~r∕μt; ŝ�; (4)

where c � μs∕μt is a constant, 0 < c < 1, and ~r � μtr. By
writing

~I�~r; ŝ� � I�~r∕μt; ŝ�; (5)

we obtain

ŝ ·∇~r
~I�~r; ŝ� � ~I�~r; ŝ� � c

Z
S2
f �ŝ · ŝ0�~I�~r; ŝ0�dŝ0 � 1

μt
S�~r∕μt; ŝ�:

(6)

Hereafter, we will take the unit of length to be 1∕μt and drop
tildes.

The specific intensity I in Eq. (6) is given as a superposition
of elementary solutions, which are solutions to the following
homogeneous equation:

ŝ ·∇I�r; ŝ� � I�r; ŝ� � c
Z
S2
f �ŝ · ŝ0�I�r; ŝ0�dŝ0: (7)

Let μ � cos θ be the cosine of the polar angle of ŝ and φ be
the azimuthal angle of ŝ. Following [7], we express f �ŝ · ŝ0� in
Eq. (2) as

f �ŝ · ŝ0� �
XN
l�0

Xl

m�−l

f l
2l� 1
4π

�l −m�!
�l�m�! �1 − μ2�jmj∕2

× �1 − μ02�jmj∕2pml �μ�pml �μ0�eim�φ−φ0�: (8)

Here the polynomials pml �μ� are related to associated
Legendre polynomials Pm

l �μ� as [7]

Pm
l �μ� � �−1�m�1 − μ2�jmj∕2pml �μ�: (9)

They satisfy the following recurrence relations and orthogo-
nality relations:

�l −m� 1�pml�1�μ� � �2l� 1�μpml �μ� − �l�m�pml−1�μ�; (10)

Z
1

−1
pml �μ�pml0 �μ�dm�μ� � 2�l�m�!

�2l� 1��l −m�! δll0 ; (11)

where we introduced

dm�μ� � �1 − μ2�jmjdμ: (12)

Furthermore, we have

pmjmj�μ� �

8>>><
>>>:

2mm!
2mm!

for m ≥ 0;

�−1�m
2jmj�jmj!� for m < 0:

(13)

3. ELEMENTARY SOLUTIONS
We seek solutions of the form of plane-wave decomposition
[10,18,19]. We introduce ν ∈ R and q ∈ R2, and define vector
k ∈ C3 as

k � 1
ν
k̂; k̂ �

�
−iνq
Q�νq�

�
; Q�νq� �

��������������������
1� �νq�2

q
; (14)

where q � jqj. We emphasize that k and k̂ are functions of ν
and q. We assume the specific intensity of the form

Imν �r; ŝ; q� � Φm
ν �ŝ; k̂�e−k·r; (15)

where

Φm
ν �ŝ; k̂� � ϕm�ν; μ�k̂���1 − μ�k̂�2�jmj∕2eimφ�k̂�: (16)

Here, μ�k̂� and φ�k̂� are the cosine of the polar angle of ŝ and
the azimuthal angle of ŝ, respectively, in the rotated reference
frame whose z axis coincides with the direction of k̂ (see
Appendix A). Note that in the laboratory frame (k̂ � ẑ),
Eq. (15) reduces to the form used in [7]. We will determine
elementary solutions Imν �r; ŝ; q� in Eq. (15) so that they satisfy
Eq. (7). We normalize ϕm as

1
2π

Z
S2
ϕm�ν; μ�k̂���1 − μ�k̂�2�jmjdŝ �

Z
1

−1
ϕm�ν; μ�dm�μ� � 1:

(17)

We will calculate singular eigenfunctions ϕm below.
By plugging Eq. (15) into the radiative transport equa-

tion (7), we obtain

�
1 −

μ�k̂�
ν

�
ϕm�ν; μ�k̂���1 − μ�k̂�2�jmj∕2eimφ�k̂�

� c
Z
S2
f �ŝ�k̂� · ŝ0�k̂��ϕm�ν; μ0�k̂���1 − μ0�k̂�2�jmj∕2eimφ0�k̂�dŝ0;

(18)

where we used ŝ · k̂ � μ�k̂� and expressed f �ŝ · ŝ0� in the ro-
tated reference frame. The right-hand side is calculated as

RHS � 2πcΘ�N − jmj��1 − μ�k̂�2�jmj∕2eimφ�k̂�

×
XN
l0�jmj

f l0
2l0 � 1
4π

�l0 −m�!
�l0 �m�!

× pml0 �μ�k̂��
Z

1

−1
pml0 �μ0�ϕm�ν; μ0�dm�μ0�; (19)

where the step function Θ�·� is defined as Θ�x� � 1 for x ≥ 0
and � 0 for x < 0. Hence,
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�ν − μ�k̂��ϕm�ν;μ�k̂�� � 2πcνΘ�N − jmj�

×
XN
l0�jmj

f l0
2l0 � 1
4π

�l0 −m�!
�l0 �m�!p

m
l0 �μ�k̂��hml0 �ν�;

(20)

where we defined

hml �ν� �
Z

1

−1
ϕm�ν; μ�pml �μ�dm�μ�: (21)

The polynomials hml were introduced by Mika [8] for m � 0
and then generalized by McCormick and Kuščer [7] for general
m. Since the right-hand side of Eq. (20) is zero for jmj > N and
then ϕm � 0, hereafter we suppose

0 ≤ jmj ≤ N: (22)

Let us define

σl � 1 − cf lΘ�N − l�: (23)

From Eq. (20), we obtain

σlνhml �ν� �
Z

1

−1
μϕm�ν; μ�pml �μ�dm�μ�: (24)

Equation (24) implies the three-term recurrence relation for
hml �ν� [20]:

ν�2l� 1�σlhml �ν� − �l −m� 1�hml�1�ν� − �l�m�hml−1�ν� � 0

(25)

with

hmjmj�ν� � pmjmj (26)

and

hjmj
jmj�1�ν� � �2jmj � 1�νσjmjh

jmj
jmj�ν�: (27)

We also have

h−jmj
l �ν� � �−1�jmj �l − jmj�!

�l� jmj�! h
jmj
l �ν�: (28)

The functions hml �ν� are computed using Eq. (25).
Let us define

gm�ν; μ�k̂�� �
XN
l0�jmj

�2l0 � 1�f l0
�l0 −m�!
�l0 �m�!p

m
l0 �μ�k̂��hml0 �ν�: (29)

We note that g−m�ν; μ�k̂�� � gm�ν; μ�k̂��. The function ϕm is
obtained as

ϕm�ν; μ�k̂�� � cν
2
P
gm�ν; μ�k̂��
ν − μ�k̂� � λm�ν��1 − ν2�−jmjδ�ν − μ�k̂��;

(30)

where λm�ν� is given below.

4. DISCRETE EIGENVALUES AND
CONTINUOUS SPECTRUM
By multiplying �1 − μ�k̂�2�jmj and integrating over ŝ, Eq. (30)
becomes

1 � cν
2
P
Z

1

−1

gm�ν; μ�
ν − μ

dm�μ� �
Z

1

−1
λm�ν�δ�ν − μ�dμ: (31)

For ν ∈ �−1; 1�, we obtain

λm�ν� � 1 −
cν
2
P
Z

1

−1

gm�ν; μ�
ν − μ

dm�μ�: (32)

Note that λ−m�ν� � λm�ν� and hence ϕ−m�ν;μ�k̂���ϕm�ν;μ�k̂��.
Let us define

Λm�z� � 1 −
cz
2

Z
1

−1

gm�z; μ�
z − μ

dm�μ�; (33)

where z ∈ C. Eigenvalues ν∉�−1; 1� are solutions to

Λm�ν� � 0: (34)

We write these discrete eigenvalues as �νmj (νm0 > νm1 >
	 	 	 > νmM−1 > 1). Note that ν−mj � νmj . The number of discrete
eigenvalues M depends on jmj and we have [7,8] M ≤ N −

jmj � 1. For ν ∈ �−1; 1�, we have the continuous spectrum.

5. METHOD OF ROTATED REFERENCE
FRAMES
Let us expand singular eigenfunctions with spherical harmon-
ics. By introducing cml �ν�, we write

Φm
ν �ŝ; k̂� �

X∞
l�jmj

cml �ν�Ylm�ŝ; k̂�: (35)

The calculation of the specific intensity by this expansion is
called the method of rotated reference frames [16,21–23].
From Eq. (18), we obtain

cml �ν� −
1
ν

X∞
l0�jmj

�Z
S2
μYl0m�ŝ�Y�

lm�ŝ�dŝ
�
cml0 �ν�

� cf lΘ�N − l�cml �ν�: (36)

Hence, we arrive at an eigenproblem:

Bmjψm�ν�i � νjψm�ν�i; (37)

where

Bm
ll0 �

1���������
σlσl0

p
Z
S2
μYl0m�ŝ�Y�

lm�ŝ�dŝ

�
������������������������������

l2 −m2

�4l2 − 1�σlσl−1

s
δl0;l−1 �

�������������������������������������������
�l� 1�2 −m2

�4�l� 1�2 − 1�σl�1σl

s
δl0 ;l�1; (38)

hljψm�ν�i � 1�������������
Zm�ν�

p ����
σl

p
cml �ν�; (39)

where the normalization factor Zm�ν� will be determined be-
low so that hψm�ν�jψm�ν�i � 1 is satisfied. Note that Φm

ν and
jψm�ν�i are related as

M. Machida Vol. 31, No. 1 / January 2014 / J. Opt. Soc. Am. A 69



Φm
ν �ŝ; k̂� �

�������������
Zm�ν�

p X∞
l�jmj

hljψm�ν�i����
σl

p Ylm�ŝ; k̂�: (40)

In Appendix B, expansion coefficients cml �ν� in Eq. (35) are
calculated using Eqs. (39) and (40).

6. GREEN’S FUNCTION
Let us consider the Green’s function of the radiative transport
equation in an infinite medium. The Green’s function obeys

ŝ ·∇G�r; ŝ; r0; ŝ0� � G�r; ŝ; r0; ŝ0�

� c
Z
S2
f �ŝ · ŝ0�G�r; ŝ0; r0; ŝ0�dŝ0 � δ�r − r0�δ�ŝ − ŝ0�: (41)

To proceed, we introduce ~Φm
ν �ŝ; k̂� such thatZ

S2
μΦm

ν �ŝ; k̂�� ~Φm
ν0 �ŝ; k̂0���dŝ � δνν0 ; (42)

where the Kronecker delta δνν0 is understood as the Dirac delta
δ�ν − ν0� for the continuous spectrum. The function ~Φm

ν �ŝ; k̂�
will be determined as we compute the Green’s function.

We replace the source term in Eq. (41) by a jump condition
and solve�
ŝ ·∇G�r; ŝ; r0; ŝ0��G�r; ŝ; r0; ŝ0� � c

R
S2 f �ŝ · ŝ0�G�r; ŝ0; r0; ŝ0�dŝ0;

G�ρ; z0 � 0; ŝ; r0; ŝ0� −G�ρ; z0 − 0; ŝ; r0; ŝ0� � 1
ŝ·ẑδ�ρ− ρ0�δ�ŝ − ŝ0�;

�43�

with the condition limjrj→∞ G�r; ŝ; r0; ŝ0� � 0 and r � �ρ; z�
(ρ ∈ R2, z ∈ R), where ρ � �x; y�. Let us expand the Green’s
function using elementary solutions or normal modes Eq. (15).

8<
:
G�ρ; z; ŝ; ρ0; z0; ŝ0� � PN

m�−N

R
R2

hPM−1
j�0 amj��q�Imj��r; ŝ;q� �

R
1
0 Am

ν �q�Imν �r; ŝ;q�dν
i

dq
�2π�2 ; z > z0;

G�ρ; z; ŝ; ρ0; z0; ŝ0� � −
P

N
m�−N

R
R2

hP
M−1
j�0 amj−�q�Imj−�r; ŝ; q� �

R
1
0 Am

ν �q�Imν �r; ŝ;q�dν
i

dq
�2π�2 ; z < z0;

: �44�

From the jump condition, coefficients amj� and Am
ν are deter-

mined as

amj��q� � e−iq·ρ0e�Q�νmj q�z0∕νmj � ~Φm
j��ŝ0; k̂���;

Am
ν �q� � e−iq·ρ0eQ�νq�z0∕ν� ~Φm

ν �ŝ0; k̂���: (45)

Hence, the Green’s function is written as

G�ρ; z; ŝ; ρ0; z0; ŝ0� �
�1
�2π�2

Z
R2

eiq·�ρ−ρ0�
XN

m�−N

�XM−1

j�0

×Φm
j��ŝ; k̂�� ~Φm

j��ŝ0; k̂���e−Q�ν
m
j q�jz−z0j∕νmj

�
Z

1

0
Φm

�ν�ŝ; k̂�� ~Φm
�ν�ŝ0; k̂���

× e−Q�νq�jz−z0j∕νdν
�
dq; (46)

where upper signs are chosen for z > z0 and lower signs are
chosen for z < z0.

To find ~Φm
ν , we note that the Green’s function obtained with

the method of rotated reference frames [21] is expressed as

G�r; ŝ; r0; ŝ0� �
1

�2π�2
Z
R2

eiq·�ρ−ρ0�
X
ν>0

XN
m�−N

1
νQ�νq�Zm�ν�

×Φm
�ν�ŝ; k̂��Φm

�ν�ŝ0; k̂���e−Q�νq�jz−z0j∕νdq; (47)

where we used the relation (40). By comparing Eqs. (46) and
(47), we obtain

~Φm
�ν�ŝ; k̂� � Φm

�ν�ŝ; k̂���νQ�νq�Zm�ν��−1: (48)

To determine Zm�ν�, we consider the one-dimensional case.
By integrating the Green’s function over ρ0, we obtain

G�z; ŝ; z0; ŝ0� � �
XN

m�−N

�XM−1

j�0

Φm
j��ŝ; ẑ�� ~Φm

j��ŝ0; ẑ���e−jz−z0j∕ν
m
j

�
Z

1

0
Φm

�ν�ŝ; ẑ�� ~Φm
�ν�ŝ0; ẑ���e−jz−z0j∕νdν

�
: (49)

On the other hand, the one-dimensional Green’s function is
given by [7,8]

G�z; ŝ; z0; ŝ0� �
1
2π

XN
m�−N

�XM−1

j�0

1
Nm

j
ϕm��νmj ; μ�ϕm��νmj ; μ0�

× �1 − μ2�jmjeim�φ−φ0�e−jz−z0j∕ν
m
j

�
Z

1

0

1
Nm�ν�ϕ

m��ν; μ�ϕm��ν; μ0�

× �1 − μ2�jmjeim�φ−φ0�e−jz−z0j∕νdν
�
; (50)

where

Nm
j � Nm�νmj � �

c
2
�νmj �2g�νmj ; νmj �

dΛm�z�
dz

����
z�νmj

; (51)

and for ν ∈ �−1; 1�,

Nm�ν� � νΛm��ν�Λm−�ν��1 − ν2�−jmj: (52)
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Here, Λm��ν� � limε→0�Λm�ν� iϵ�. By comparing Eqs. (49)
and (50), we obtain

νmj Z
m�νmj � � 2πNm

j ; νZm�ν� � 2πNm�ν�; (53)

where ν belongs to the continuous spectrum. Finally, we
obtain

~Φm
ν �ŝ; k̂� � Φm

ν �ŝ; k̂��2πQ�νq�Nm�ν��−1; (54)

where ν � �νmj or ν ∈ �−1; 1�. The Green’s function is
obtained as

G�ρ; z; ŝ; ρ0; z0; ŝ0� �
1

�2π�3
Z
R2

eiq·�ρ−ρ0�
XN

m�−N

�XM−1

j�0

1
Q�νmj q�Nm

j

×Φm
j��ŝ; k̂��Φm

j��ŝ0; k̂���e−Q�ν
m
j q�jz−z0j∕νmj

�
Z

1

0

1
Q�νq�Nm�ν�Φ

m
�ν�ŝ; k̂�

× �Φm
�ν�ŝ0; k̂���e−Q�νq�jz−z0j∕νdνgdq:

(55)

As the simplest case, let us consider the isotropic scattering
N � 0. We then have

Φ0
ν�ŝ; k̂� �

cν
2
P

1

ν− μ�k̂�� λ0�ν�δ�ν − μ�k̂�� � ϕ0�ν;μ�k̂��; (56)

where

λ0�ν� � 1 −
cν
2
P
Z

1

−1

1
ν − μ

dμ � 1 − cν tanh−1ν: (57)

In this case M � 1 and the discrete eigenvalues �ν00 � �ν0
are solutions to

Λ0�z� � 1 −
cz
2

Z
1

−1

1
z − μ

dμ � 1 − cz tanh−1
1
z
� 0: (58)

The Green’s function is obtained as

G�ρ; z; ŝ; ρ0; z0; ŝ0� �
1

�2π�3
Z
R2

eiq·�ρ−ρ0�
�

1
Q�ν0q�N 0

ϕ0��ν0; μ�k̂��ϕ0���ν0; μ0�k̂��e−Q�ν0q�jz−z0j∕ν0

�
Z

1

0

1
Q�νq�N �ν�ϕ

0��ν; μ�k̂��ϕ0���ν; μ0�k̂��e−Q�νq�jz−z0j∕νdνgdq: (59)

If we integrate Eq. (59) with respect to ρ0, G in Eq. (59)
becomes the one-dimensional Green’s function written in
the book by Case and Zweifel [1].

7. ENERGY DENSITY
Let us calculate the energy density U . For simplicity, we as-
sume linear scattering, N � 1. We measure U along the z axis.

The energy density U is given by

U�z� � 1
v

Z
S2
I�ρ � 0; z; ŝ�dŝ; (60)

where v is the speed of light in the medium and I is the specific
intensity obeying Eq. (1).

First we place an isotropic source at the origin, S � Saδ�r�
with constant Sa in Eq. (1) [see Fig. 1(a)]. We have

I�0; z; ŝ� � μ2t Sa

Z
R3×S2

G�0; z; ŝ; ρ0; z0; ŝ0�

× δ�ρ0�δ�z0�dρ0dz0dŝ0; (61)

where z, ρ, z0 are measured in the unit of 1∕μt. In this case, U
is spherically symmetric. Using Eq. (55) we obtain

U�z�
μ2t Sa

�
Z
S2×S2

G�0; z; ŝ; 0; 0; ŝ0�dŝdŝ0

� 1
vz

�
e−z∕ν0

ν0N 0
�

Z
1

0

e−z∕ν

νN �ν� dν
�
; z > 0: (62)

Here, ν0 is the positive solution to Λ0�ν0� � 0, where

Λ0�ν0� � 1 −
cν0
2

Z
1

−1

g0�ν0; μ�
ν0 − μ

dμ: (63)

We consider the following three cases: (i) μa � 0.03 cm−1,
μs � 100 cm−1, f 1 � 0 (c � 0.9997); (ii) μa � 0.03 cm−1,
μs � 100 cm−1, f 1 � 0.3 (c � 0.9997) [24]; and (iii) μa �
0.3 cm−1, μs � 100 cm−1, f 1 � 0.3 (c � 0.997). In the case
(i) with f 1 � 0, the density can also be obtained with the
Fourier transform. The Green’s function is obtained as

G�r; ŝ; r0; ŝ0� � G0�r; ŝ; r0; ŝ0��
c

4π�2π�3
Z
R3

eik·�r−r0�

×
1

�1� ik · ŝ��1� ik · ŝ0�

�
1 −

c
jkj tan

−1�jkj�
�
−1
dk;

(64)

where

G0�r; ŝ; r0; ŝ0� �
e−jr−r0j

jr − r0j2
δ

�
ŝ −

r − r0
jr − r0j

�
δ�ŝ − ŝ0�: (65)

Using Eqs. (64) and (65), we obtain
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U�z�
μ2t Sa

� e−jzj

vz2
� 2c

πv

Z
∞

0

sin�kz�
z

�tan−1k�2
k − c tan−1k

dk: (66)

In Fig. 2, we plot U�z�v∕μ2t Sa as a function of z. In addition to
Eq. (62), densities by Eq. (66) and by Monte Carlo simulation
are shown. We see perfect agreement.

Next we consider the source of length l on the x axis [see
Fig. 1(b)], i.e., we put S � SbΘ�l − x�Θ�x�δ�y�δ�z� with con-
stant Sb in Eq. (1). We have

I�0; z; ŝ� � μtSb

Z
R3×S2

G�0; z; ŝ; x0; y0; z0; ŝ0�

× Θ�μtl − x0�Θ�x0�δ�y0�δ�z0�dx0dy0dz0dŝ0; (67)

where z, x0, y0, z0 are measured in the unit of 1∕μt. We com-
pute I using Eq. (55) and obtain

U�z�
μtSb

�
Z
R2

Z
S2×S2

G�0; z; ŝ; ρ0; 0; ŝ0�

× Θ�μtl − x0�Θ�x0�δ�y0�dŝdŝ0dρ0

� 1
v

Z
∞

0

�Z
μtlq

0
J0�t�dt

��
e−Q�ν0q�z∕ν0

Q�ν0q�N 0

�
Z

1

0

e−Q�νq�z∕ν

Q�νq�N �ν� dν
�
dq; z > 0; (68)

where ν0 is the positive root of Eq. (63) and J0�u� is the zeroth-
order Bessel function of the first kind. In addition, with the
Fourier transform, we obtain

U�z�
μtSb

� 1
v

Z
μtl

0

�
e−

����������
x20�z2

p

x20 � z2

� 2c
π

Z
∞

0

sin
�
k

����������������
x20 � z2

q �
����������������
x20 � z2

q �tan−1k�2
k − c tan−1k

dk
�
dx0: (69)

Let us put μtl � 1. In Fig. 3, we plot Eq. (68) together with
Eq. (69). Moreover, Eq. (62) for �μa; μs; f 1� � �0.03 cm−1;
100 cm−1; 0.3� is plotted for comparison. We see that U is
similar to the density in Fig. 2 except for small z.

8. SUMMARY
We have constructed elementary solutions of the radiative
transport equation in three dimensions. Each elementary sol-
ution carries the wave vector k, and is labeled by Case’s dis-
crete eigenvalues and continuous spectrum. By virtue of
rotated reference frames, the angular part of each elementary
solution is given by the singular eigenfunction for the one-
dimensional radiative transport equation.

Using the elementary solutions, the Green’s function in an
infinite medium is obtained. Moreover, the energy density is
computed for different sources and optical parameters.

APPENDIX A: POLAR AND AZIMUTHAL
ANGLES IN ROTATED REFERENCE FRAMES
Let θ and φ be the polar and azimuthal angles of ŝ in the labo-
ratory frame. Let φk̂ and θk̂ be the polar and azimuthal angles
of k̂ in the laboratory frame. For k̂ � �−iνq; Q�νq��, we obtain

cos θk̂ � k̂ · ẑ � Q�νq�; sin θk̂ �
�����������������������
1 − cos2 θk̂

q
� ijνqj

(A1)

and

φk̂ �
�
φq � π for ν > 0;
φq for ν < 0; (A2)

where φq is the angle of q. Therefore, we have

μ�k̂� � ŝ · k̂ � −iνq sin θ cos�φ − φq� � Q�νq� cos θ: (A3)

In general, we can rotate functions as follows. Let us intro-
duce rotated spherical harmonics Ylm�ŝ; k̂� [16]:

U(z)
(a)

U(z)
(b)

Fig. 1. Energy density U�z� for (a) the point source and (b) the
source of length l on the x axis.
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Fourier transform
µa=0.03, µs=100, f1=0.3

µa=0.3, µs=100, f1=0.3

Monte Carlo

Fig. 2. Energy density Eq. (62) is plotted together with Eq. (66) and
results from Monte Carlo simulation. The optical parameters
�μa; μs; f 1� are, from the top, �0.03 cm−1; 100 cm−1; 0�, �0.03 cm−1;
100 cm−1; 0.3�, and �0.3 cm−1; 100 cm−1; 0.3�.
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Fig. 3. Energy density Eq. (68) is plotted. The optical parameters
�μa; μs; f 1� are, from the top, �0.03 cm−1; 100 cm−1; 0�, �0.03 cm−1;
100 cm−1; 0.3�, and �0.3 cm−1; 100 cm−1; 0.3�. The blue line from Fig. 2
shows Eq. (62) for �μa; μs; f 1� � �0.03 cm−1; 100 cm−1; 0.3�.
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Ylm�ŝ; k̂� � D�k̂�Ylm�ŝ� �
Xl

m0�−l

Dl
m0m�φk̂; θk̂; 0�Ylm0 �ŝ�; (A4)

where Dl
m0m�φk̂; θk̂; 0� � e−im

0φk̂dlm0m�θk̂�. Here, dlm0m are the
Wigner d-matrices [25]. That is, Ylm�ŝ; k̂� are spherical har-
monics defined in a rotated reference frame whose z axis co-
incides with the direction of the unit vector k̂. We have
Ylm�ŝ� � Ylm�ŝ; ẑ�. We write analytically continued Wigner’s
d matrices as

dlm0m�θk̂� � dlm0m�iτ�νq��: (A5)

First, a few matrices are obtained as

d000 � 1; (A6)

d100 �
��������������
1� x2

p
; d101 �

i���
2

p jxj; d11�1 �
1�

��������������
1� x2

p
2

:

(A7)

We note that dlmm0 � �−1�m�m0
dl−m−m0 � �−1�m�m0

dlm0m. All
dlm0m�iτ�νq�� are computed using the recurrence relations
[23]. We obtain

eimφ�k̂� � �1 − μ�k̂�2�−jmj∕2 �−1�m
���������������������������
4π�2m� 1�!

p
�2m� 1�!!

×
Xm

m0�−m

e−im
0φk̂dmm0m�θk̂�Ymm0 �ŝ�; (A8)

where θ satisfies cos θ � μ with μ in Eq. (15).

APPENDIX B: EXPANSION COEFFICIENTS
Here, we calculate cml �ν�. We have

cml �ν� �
Z
S2

�
cν
2
P
gm�ν; μ�
ν − μ

� λm�ν��1 − ν2�−jmjδ�ν − μ�
�

× �1 − μ2�jmj∕2eimφY�
lm�ŝ�dŝ: (B1)

Hence,

cml �ν� � 2π

��������������������������������
2l� 1
4π

�l −m�!
�l�m�!

s �
cν
2

XN
l00�jmj

f l00 �2l00 � 1�

×
�l00 −m�!
�l00 �m�!h

m
l00 �ν��−1�mP

Z
1

−1

Pm
l00 �μ�Pm

l �μ�
ν − μ

dμ

� λm�ν��1 − ν2�−jmj∕2Pm
l �ν�

Z
1

−1
δ�ν − μ�dμ

�
: (B2)

Note that cml �−ν� � �−1�l�mcml �ν� because Pm
l �−ν� �

�−1�l�mPm
l �ν�. Therefore, we obtain for ν∉�−1; 1�

cml �ν� � 2π

��������������������������������
2l� 1
4π

�l −m�!
�l�m�!

s
cν
2

XN
l00�jmj

f l00 �2l00 � 1�

×
�l00 −m�!
�l00 �m�! h

m
l00 �ν��−1�m2Qm

max�l;l00��ν�Pm
min�l;l00��ν�; (B3)

where Qm
max�l;l00��ν� and Pm

min�l;l00��ν� have a branch cut from −∞
to 1 [26], and for ν ∈ �−1; 1�

cml �ν� � 2π

��������������������������������
2l� 1
4π

�l −m�!
�l�m�!

s �
cν�−1�m

2

XN
l00�jmj

f l00 �2l00 � 1�

×
�l00 −m�!
�l00 �m�! h

m
l00 �ν�

×
�
−iπPm

l00 �ν�Pm
l �ν� −

Z
π

0

Pm
l00 �eiθ�Pm

l �eiθ�
ν − eiθ

ieiθdθ
�

� λm�ν��1 − ν2�−jmj∕2Pm
l �ν�

�
: (B4)
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